РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПЛАТФОРМЫ ПРЕДОСТАВЛЕНИЯ ИНФОРМАЦИИ О МЕСТОНАХОЖДЕНИИ АБОНЕНТА, ОБРАТИВШЕГОСЯ В ЭКСТРЕННУЮ ОПЕРАТИВНУЮ СЛУЖБУ- «LBSGW112»

Эксплуатация платформы производится в полном соответствии с документом «Методические рекомендации по обеспечению предоставления операторами связи информации о месте нахождения пользовательского оборудования (оконечного оборудования) операторам системы обеспечения вызова экстренных оперативных служб по единому номеру «112» (новая редакция)» доступном по ссылке https://digital.gov.ru/ru/documents/5779/ и приведённом ниже без изменений.

Содержание

История изменений	4
Обозначения и сокращения	5
Перечень используемых документов и ссылки на них	7
1 Общие положения	9
2 Инфраструктура предоставления информации в систему-112 операторами связи и интерфейсы взаимодействия	12
2.1 Состав и функциональное назначение компонентов инфраструктуры	. 12
2.1.1 Телефонная сеть связи общего пользования	. 13
2.1.2 УОВЭОС	. 13
2.1.3 ЦОВ-112	. 13
2.1.4 TCMH	. 14
2.1.5 ИС оператора связи	. 16
2.1.6 TCKC-112	. 17
2.2 Интерфейсы взаимодействия компонентов инфраструктуры	. 19
2.2.1 Интерфейс 1	. 19
2.2.2 Интерфейс 2	. 19
2.2.3 Интерфейс 3	. 20
2.2.4 Интерфейс 4	. 20
2.2.5 Интерфейс 5	. 20
2.2.6 Интерфейс 6	. 21
2.2.7 Интерфейс 7	. 21
2.3 Базовые сценарии взаимодействия	21
З Состав и структуры данных	. 27
3.1 Представление данных места установки пользовательского оборудования в виде адресного объекта	. 27
3.2 Представление данных места нахождения пользовательского оборудования в виде географических координат	. 28
3.3 Представление дополнительных данных, необходимых для организации реагирования	33
3.4 Состав и структура делегируемой информации	. 34
4 Параметры протоколов взаимодействия	. 38

4.1 Форматы и значения параметров, используемых для передачи информации в сообщении IAM системы сигнализации ОКС №7 (ISUP) и системы сигнализации SIP-T/SIP-I	38
4.2 Общие правила включения в сообщения протокола SIP идентификатора обслуживаю сети СПРС и данных о месте нахождения пользовательского оборудования	
4.3 Описание и параметры протокола взаимодействия УОВЭОС с ТСМН	43
4.4 Описание и параметры протокола взаимодействия TCMH/ЦОВ-112 с ИС оператора связи	44
4.5 Описание и параметры протокола взаимодействия ЦОВ-112 с TCMH	49
4.6 Описание и параметры протокола передачи экстренных коротких текстовых сообщений от ТСКС-112 в ЦОВ-112	50
Приложение А. Описание XML-схемы, используемой для формирования XML- документов	52
Приложение Б. Примеры структуры XML-документов и сообщений протокола SIP	53
Приложение В. Коды результатов взаимодействия ЦОВ-112 с ТСМН и ИС операторов связи	80

История изменений

Версия	Изменения	Утверждены	Дата
1.0	Первая версия документа	Министром связи и массовых коммуникаций Российской Федерации Н.А. Никифоровым	09 октября 2015 г.
2.0	Корректировки в связи с выходом Приказа Минкомсвязи России от 01.12.2016 г. № 607 и по результатам опытной эксплуатации систем-112 с функцией приема данных места нахождения и коротких SMS в субъектах РФ	Министром связи и массовых коммуникаций Российской Федерации Н.А. Никифоровым	09 октября 2017 г.

Обозначения и сокращения

Идентификатор обслуживающей сети — унифицированный номер, однозначно определяющий обслуживающую сеть оператора связи, передаваемый от элементов технической инфраструктуры оператора подвижной радиотелефонной связи в потоке сигнализации при установлении соединения пользовательского оборудования с системой-112.

ИС – информационная система.

ОКС №7 – система сигнализации по общему каналу №7 МСЭ-Т.

Система-112 — система обеспечения вызова экстренных оперативных служб через единый номер «112» на базе единых дежурно-диспетчерских служб муниципальных образований.

СПРС – сеть подвижной радиотелефонной связи.

ССОП – сеть связи общего пользования.

ТЗУС – транзитный зоновый узел связи.

ТСМН – технические средства обработки информации о месте нахождения пользовательского (оконечного) оборудования.

ТСКС-112 – технические средства передачи экстренных коротких текстовых сообщений.

УОВЭОС – узел обслуживания вызовов экстренных оперативных служб.

ФИАС – федеральная информационная адресная система.

ЦКП – центр коммутации подвижной радиотелефонной связи.

ЦОВ-112— центр обработки вызовов системы-112.

ЭОС – экстренная оперативная служба.

SIP – (Session Initiation Protocol) протокол инициации и управления сессиями. Протокол передачи данных прикладного уровня для создания, модификации и завершения сессии с одним или более участниками, описывающий способ установления и завершения пользовательского интернетсеанса, включающего

обмен мультимедийным содержимым (IP-телефония, видео- и аудиоконференции, мгновенные сообщения, онлайн-игры).

SMS – короткое текстовое сообщение.

«pull» - метод передачи информации о месте нахождения пользовательского оборудования и дополнительных данных, необходимых для реагирования, от информационных систем оператора связи в ЦОВ-112 или ТСМН по запросу.

«push» - метод инициативной передачи информации о месте нахождения от информационных систем оператора связи в ЦОВ-112 автоматически по факту инициации вызова, адресованного на номер «112».

Перечень используемых документов и ссылки на них

N₂	Обозначение документа	Название документа	Ссылка на документ
1	_	Федеральный закон от 7 июля 2003 г. №126-ФЗ «О связи»	http://minsvyaz.ru/ru/documents/3068/
2	_	Постановление Правительства Российской Федерации от 21 ноября 2011 г. № 958 «О системе обеспечения вызова экстренных оперативных служб по единому номеру «112»	http://minsvyaz.ru/ru/documents/3583/
3	_	Приказ Минкомсвязи России от 01.12.2016 г. № 607 «Об утверждении Правил определения места нахождения пользовательского оборудования (оконечного оборудования), с которого были осуществлены вызов или передача сообщения о происшествии по единому номеру вызова экстренных оперативных служб «112», и Порядка предоставления и объема информации, необходимой для обеспечения реагирования по вызову или сообщению о происшествии по единому номеру вызова экстренных оперативных служб «112»	http://minsvyaz.ru/ru/documents/5487/
4	_	Приказ Минкомсвязи России от 15 сентября 2015 г. № 346 «Об утверждении правил применения оборудования узлов обслуживания вызовов экстренных оперативных служб»	http://minsvyaz.ru/ru/documents/4740/

5	_	Приказ Минкомсвязи России от 30 ноября 2015 г. № 484 «Правила применения оборудования центров обработки вызовов экстренных оперативных служб. Часть 1. Правила применения оборудования центров обработки вызовов экстренных оперативных служб по единому номеру «112»	http://minsvyaz.ru/ru/documents/4859/
6	I	Официальные нормативные документы по ФИАС	http://fias.nalog.ru/FiasInfo.aspx
7		«Сведения о составе информации государственного адресного реестра Федеральной информационной адресной системы»	http://fias.nalog.ru/Docs/%D0%A1%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B88%D1%8F%20%D0%BE%20%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%B5%20%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8%D0%B8%D0%B8%D0%90%D1%86%D0%B8%D0%B8%20%D0%A4%D0%98%D0%90%D0%A1%20%D1%81%2009062016.doc
8	GML 3.1.1 PIDFLO	Shape Application Schema for use by the Internet Engineering Task Force (IETF)	portal.opengeospatial.org/files/?artifact_id=216 30
9	ISO 8601	Data elements and interchange formats – Information interchange – Representation of dates and times	http://dotat.at/tmp/ISO_8601-2004_E.pdf
10	RFC3863	Presence Information Data Format (PIDF)	https://tools.ietf.org/html/rfc3863
11	RFC4119	A Presence-based GEOPRIV Location Object Format	https://tools.ietf.org/html/rfc4119
12	RFC4479	A Data Model for Presence	https://tools.ietf.org/html/rfc4479
13	RFC5491	GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations	https://tools.ietf.org/html/rfc5491
14	RFC5985	HTTP-Enabled Location Delivery (HELD)	https://tools.ietf.org/html/rfc5985
15	RFC6442	Location Conveyance for the Session Initiation Protocol	https://tools.ietf.org/html/rfc6442
16	RFC3261	SIP: Session Initiation Protocol	https://tools.ietf.org/html/rfc3261

17	RFC6155	Use of Device Identity in HTTP- Enabled Location Delivery (HELD)	https://tools.ietf.org/html/rfc6155
18	RFC6915	Flow Identity Extension for HTTP-Enabled Location Delivery (HELD)	https://tools.ietf.org/html/rfc6915
19	Recommendation ITU-T Q.763 (12/99)	Signalling System No. 7 - ISDN User Part formats and codes	http://www.itu.int/rec/T-REC-Q.763-199912I/en
	Рекомендации МСЭ-Т Q.763		

1 Общие положения

Методические рекомендации по обеспечению предоставления операторами связи информации о месте нахождения пользовательского оборудования (оконечного оборудования) операторам системы обеспечения вызова экстренных оперативных служб по единому номеру (далее — Методические рекомендации) разработаны на основании и в соответствии с:

- Федеральным законом от 7 июля 2003 г. «О связи» №126 (статья 52)
 [1];
- Постановлением Правительства Российской Федерации от 21 ноября 2011 г. № 958 [2];
- Правилами определения нахождения места пользовательского оборудования (оконечного оборудования), которого были осуществлены вызов или передача сообщения о происшествии по единому номеру вызова экстренных оперативных служб «112», и Порядком предоставления и объема информации, необходимой для обеспечения реагирования по вызову или сообщению о происшествии по единому номеру вызова экстренных оперативных служб «112» о месте нахождения пользовательского (оконечного) оборудования, с которого были осуществлены вызов или передача сообщения (Приказ Минкомсвязи России от 01.12.2016 г. № 607) [3].

Методические рекомендации учитывают требования к интерфейсам взаимодействия, определенные в следующих документах:

- «Правила применения оборудования узлов обслуживания вызовов экстренных оперативных служб», Приказ Минкомсвязи России от 15 сентября 2015 г. N 346 [4];
- «Правила применения оборудования центров обработки вызовов экстренных оперативных служб. Часть 1. Правила применения оборудования центров обработки вызовов экстренных оперативных служб по единому номеру «112», Приказ Минкомсвязи России от 30 ноября 2015 г. N 484 [5].

Технические средства обработки информации о месте нахождения пользовательского (оконечного) оборудования и Технические средства обработки коротких текстовых сообщений, адресованных на единый номер вызова экстренных оперативных служб «112», в соответствии с п.3 «Правил организации и проведения работ по обязательному подтверждению соответствия средств связи, утвержденных постановлением Правительства Российской Федерации от 13 апреля 2005 г. №214, подлежат декларированию соответствия.

Минкомсвязь России ведет разработку «Правил применения технических средств обработки информации о месте нахождения пользовательского (оконечного) оборудования» и «Правил применения технических средств обработки коротких текстовых сообщений, адресованных на единый номер вызова экстренных оперативных служб «112».

Методические рекомендации направлены на оказание практической помощи операторам связи, осуществляющим деятельность в области оказания услуг: местной телефонной связи, за исключением услуг местной телефонной связи с использованием таксофонов и средств коллективного доступа; местной телефонной связи с телефонной связи с использованием таксофонов; местной телефонной связи с

использованием средств коллективного доступа; подвижной радиосвязи в сети связи общего пользования; подвижной радиотелефонной связи; подвижной спутниковой радиосвязи, при определении:

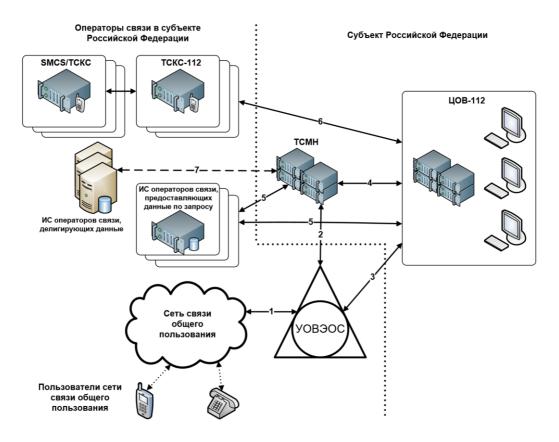
- места нахождения пользовательского оборудования (оконечного оборудования) (далее пользовательское оборудование), с которого был осуществлен вызов или передача сообщения о происшествии посредством набора единого номера вызова ЭОС;
- состава и форматов информации о месте нахождения пользовательского оборудования, с которого был осуществлен вызов или передача сообщения о происшествии посредством набора единого номера вызова ЭОС, и дополнительной информации, необходимой для обеспечения реагирования;
- протоколов взаимодействия элементов телекоммуникационной подсистемы и информационно-коммуникационной подсистемы системы-112 в части передачи операторами связи и приема ЦОВ-112 информации о месте нахождения пользовательского (оконечного) оборудования и дополнительной информации, необходимой для обеспечения реагирования, а также передачи экстренных коротких текстовых сообщений в систему-112 субъекта РФ.

Методические рекомендации могут быть использованы органами исполнительной власти субъектов Российской Федерации при разработке проектной и методической документации по созданию и эксплуатации системы 112, разработчиками системных проектов телекоммуникационной подсистемы системы обеспечения вызова экстренных оперативных служб по единому номеру «112» для субъектов Российской Федерации, операторами связи, проектировщиками узлов и сооружений связи.

Настоящие методические рекомендации не регламентируют:

- предоставление информации о месте нахождения пользовательского оборудования и дополнительной информации, сформированной

- аппаратно-программными средствами, установленными на этом пользовательском оборудовании;
- порядок взаимодействия между информационными системами операторов связи при определении места нахождения пользовательского оборудования.


Настоящие Методические рекомендации не содержат норм и прав, носят рекомендательный и разъяснительный характер.

2 Инфраструктура предоставления информации в систему-112 операторами связи и интерфейсы взаимодействия

2.1 Состав и функциональное назначение компонентов инфраструктуры

Передача информации о месте нахождения пользовательского оборудования, дополнительной информации, необходимой для обеспечения реагирования, а также экстренных коротких текстовых сообщений в систему-112 обеспечивается путем информационного взаимодействия нескольких компонентов телекоммуникационной подсистемы и информационнокоммуникационной подсистемы системы-112.

На рисунке 1 показаны взаимодействующие компоненты системы-112 и операторов связи, а также интерфейсы взаимодействия при передаче в систему-112 информации о месте нахождения пользовательского оборудования, дополнительной информации, необходимой для обеспечения реагирования, и экстренных коротких текстовых сообщений.

1-7 – интерфейсы взаимодействия

Рисунок 1 — Инфраструктура предоставления информации в систему-112 операторами связи

2.1.1 Телефонная сеть связи общего пользования

Телефонная сеть связи общего пользования обеспечивает прохождение телефонных вызовов от пользовательского оборудования до узла обслуживания вызовов экстренных оперативных служб субъекта РФ.

ССОП включает в себя сети фиксированной связи, сети подвижной радиотелефонной связи, сети спутниковой связи.

2.1.2 УОВЭОС

УОВЭОС — узел связи сети фиксированной телефонной связи, компонент телекоммуникационной подсистемы системы-112, который обеспечивает прием вызовов, поступающих по номеру «112» от пользователей сетей связи операторов, действующих на территории субъекта РФ и их передачу в Центр Обслуживания Вызовов экстренных оперативных служб системы-112 (ЦОВ-112). УОВЭОС может

взаимодействовать с конструктивно обособленными ТСМН с целью инициации получения данных места нахождения пользовательского оборудования, с которого поступил вызов, и включения этих данных в протокол сигнализации SIP (INVITE) [16].

При отсутствии конструктивно обособленного ТСМН в инфраструктуре системы-112 субъекта РФ УОВЭОС выполняет функции оконечного (оконечнотранзитного) узла взаимодействия систем телефонной сигнализации, обслуживающих линии связи с коммутацией каналов и с коммутацией пакетов информации.

2.1.3 ЦОВ-112

ЦОВ-112 в части функции получения и обработки данных места нахождения и дополнительных данных, необходимых для реагирования, должен обеспечивать:

- прием вызовов от УОВЭОС без данных места нахождения;
- прием вызовов от УОВЭОС с инкапсулированными в протокол сигнализации SIP данными места нахождения;
- выделение данных места нахождения, поступивших в протоколе сигнализации SIP;
- выделение номера пользовательского оборудования, поступившего в протоколе сигнализации;
- выделение идентификатора обслуживающей сети, поступившего в протоколе сигнализации;
- формирование запроса на получение данных места нахождения пользовательского оборудования (автоматически в момент поступления ТСМН (при наличии) в определенном в настоящем документе формате;
- определение информационной системы оператора связи, которая является источником данных для номера пользовательского оборудования, с которого поступил вызов (при реализации функции ТСМН в составе ЦОВ-112);

- формирование запроса в ИС оператора связи на получение данных места нахождения пользовательского оборудования (автоматически в момент поступления вызова и по запросу оператора ЦОВ-112) в определенном в настоящем документе формате (при реализации функции ТСМН в составе ЦОВ-112);
- формирование запроса в ИС оператора связи на получение дополнительных данных, необходимых для организации реагирования (по запросу оператора ЦОВ-112) в определенном в настоящем документе формате (при реализации функции ТСМН в составе ЦОВ-112);
- прием данных места нахождения в определенном в настоящем документе формате.

2.1.4 **TCMH**

ТСМН конструктивно выделенный элемент системы-112, который, в целях получения и обработки данных места нахождения пользовательского оборудования, обеспечивает реализацию следующих функций:

- прием от ЦОВ-112 или УОВЭОС запросов на определение места нахождения пользовательского оборудования (оконечного оборудования), с которого были осуществлены вызов или передача сообщения о происшествии по единому номеру вызова экстренных оперативных служб «112», в определенном в настоящем документе формате;
- прием от ЦОВ-112 запроса на определение дополнительной информации, необходимой для организации реагирования (далее «дополнительной информации») в объеме, определенном приказом Министерства связи и массовых коммуникаций Российской Федерации от 02 декабря 2016 г. № 607;

- определение оператора связи, который обеспечил доступ к своей сети пользовательского оборудования (оконечного оборудования)¹, запрос на определение места нахождения которого поступил от ЦОВ-112 (в том числе, запрос дополнительной информации) или УОВЭОС²;
- формирование и отправка запроса о предоставлении информации о месте нахождения пользовательского оборудования, либо запроса на предоставление дополнительной информации³, в информационные системы операторов связи;
- получение информации о месте нахождения пользовательского оборудования, либо дополнительной информации, в объеме, определенном приказом Министерства связи и массовых коммуникаций Российской Федерации от 02 декабря 2016 г. № 607, от информационных систем операторов связи и других внешних информационных систем;
- преобразование форматов данных, полученных от информационных систем операторов связи или других внешних информационных систем;
- передача информации о месте нахождения пользовательского оборудования, либо дополнительной информации, в информационную систему ЦОВ-112, либо информации о месте нахождения пользовательского оборудования в УОВЭОС⁴;

 $^{^1}$ При оказании услуг подвижной спутниковой радиосвязи, подвижной радиотелефонной связи, либо фиксированной телефонной связи.

 $^{^2}$ Опционально, при организации совместного функционирования ТСМН (функционально или конструктивно обособленных) с УОВЭОС.

³ «Передача дополнительной информации, необходимой для обеспечения реагирования, осуществляется информационной системой оператора домашней сети по запросу от ЦОВ-112 (метод «pull»)» . (п.29 «Порядок предоставления и объем информации, необходимой для обеспечения реагирования по вызову или сообщению о происшествии по единому номеру вызова экстренных оперативных служб «112»», утвержденный Приказом Минкомсвязи России от 01.12.2016 №607).

 $^{^4}$ Опционально, при организации совместного функционирования ТСМН (функционально или конструктивно обособленных) с УОВЭОС.

- хранение и обновление информации, в том числе локальное хранение информации о месте установки пользовательского оборудования местных сетей фиксированной телефонной связи и дополнительной информации, предоставляемых и актуализируемых операторами связи;
- ведение статистики;
- взаимодействие с внешними информационными системами операторов связи или ЦОВ-112 по протоколу прикладного уровня HTTP (или HTTPS) и с УОВЭОС по протоколу SIP.

2.1.5 ИС оператора связи

Информационной системой оператора связи в рамках настоящих методических рекомендаций называется совокупность информационных ресурсов операторов связи и средств их предоставления в систему-112 в соответствии с процедурами и форматами, описанными в настоящем документе.

ИС оператора связи, предоставляющего данные в систему-112 по запросу, обеспечивает выполнение следующей функциональности:

- получение запроса на определение данных места нахождения пользовательского оборудования от системы-112 в определенном в настоящем документе формате;
- проверка правомерности поступления запроса от системы-112 (наличие телефонного вызова, в том числе завершенного, или переданного короткого текстового сообщения с абонентского номера, к которому относится запрос в течение установленного Минкомсвязи России интервала времени от момента поступления запроса ⁵);
- формирование и передачу данных места нахождения и дополнительных данных, необходимых для реагирования в ЦОВ-112 в определенном в настоящем документе формате;

 $^{^{5}}$ До выхода нормативно-правового документа в рамках настоящих методических рекомендаций временной интервал устанавливается равным 24 часам.

- по факту инициации вызова на номер «112», получение из информационных ресурсов и формирование данных о месте нахождения для их включения в протокол сигнализации (SIP) с целью последующей их передачи совместно с вызовом методом «push» (при наличии технической возможности оператора связи).

ИС оператора связи, делегирующего данные в систему-112, обеспечивает выполнение следующей функциональности (автоматически или посредством действий эксплуатирующего персонала):

- периодическое формирование структурированного файла с информацией, содержащей данные места установки оператором связи пользовательского оборудования и дополнительной информации об абонентах, необходимой для организации реагирования, в определенном в настоящем документе формате;
- передача структурированного файла в ТСМН согласованным взаимодействующими сторонами методом (в том числе автоматизированным способом через предоставляемые ТСМН средства).

2.1.6 TCKC-112

Технические средства коротких текстовых сообщений, адресованных на единый номер вызова экстренных оперативных служб «112» (далее - ТСКС-112) элемент телекоммуникационной инфраструктуры оператора подвижной радиотелефонной связи, который предназначены для реализации функций приема, маршрутизации и доставки коротких текстовых сообщений по единому номеру «112», включая:

- прием коротких текстовых сообщений, адресованных на единый номер «112», в том числе непосредственно от ТСКС (SMSC) операторов подвижной радиотелефонной связи;

- формирование и отправка запроса о предоставлении информации о месте нахождения пользовательского оборудования (оконечного оборудования) в информационные системы операторов связи или в технические средства обработки информации о месте нахождения пользовательского оборудования (оконечного оборудования);
- получение информации о месте нахождения пользовательского оборудования (оконечного оборудования) от информационных систем операторов связи;
- определение ЦОВ-112, в который должно быть направлено короткое текстовое сообщение на основе информации о месте нахождения пользовательского оборудования (оконечного оборудования);
- передача по протоколу прикладного уровня SIP короткого текстового сообщения, адресованного на единый номер «112», идентификатора обслуживающей информации месте сети И нахождения оборудования (оконечного оборудования), пользовательского которого поступило данное короткое текстовое сообщение на единый Российской ЦОВ-112 субъекта «112», определенный на основании полученных данных о месте нахождения пользовательского оборудования;
- контроль доставки и передача уведомления о доставке текстового сообщения в Систему-112;
- повторная доставка короткого текстового сообщения в Систему-112 в случае неуспешной доставки сообщения;
- обеспечение конфиденциальности коротких текстовых сообщений.

2.2 Интерфейсы взаимодействия компонентов инфраструктуры

2.2.1 Интерфейс 1

Обеспечивает прохождение вызова, адресованного на номер «112», от сети оператора ССОП на УОВЭОС.

При организации направления связи в сети с коммутацией каналов используется система межстанционной телефонной сигнализации ОКС №7 (ISUP). Для вызовов от пользователей сетей подвижной радиотелефонной связи, в целях определения обслуживающей сети, в потоке сигнализации передается идентификатор обслуживающей сети.

При организации направления связи в сети с коммутацией пакетов информации используется системы сигнализации SIP (SIP-T/SIP-I/SIP NNI/SIP). В целях определения обслуживающей сети для вызовов от пользователей сетей подвижной радиотелефонной связи, в потоке сигнализации передается идентификатор обслуживающей сети. Допускается передача в потоке сигнализации информации о месте нахождения пользовательского оборудования.

2.2.2 Интерфейс 2

Интерфейс обеспечивает взаимодействие УОВЭОС с конструктивно обособленными $TCMH^6$.

Взаимодействие УОВЭОС с конструктивно обособленными ТСМН выполняется по протоколу SIP с использованием процедуры ремаршрутизации. От конструктивно обособленного ТСМН к УОВЭОС передается информация о месте нахождения пользовательского оборудования и идентификатор обслуживающей сети (для сетей подвижной радиотелефонной связи).

⁶ В случае передачи данных места нахождения при установлении соединения с ЦОВ-112 путем применения метода «pull» для получения данных места нахождения пользовательского оборудования (интерфейс 5, рисунок 1) и метода «push» для передачи информации о месте нахождения на интерфейсе 3, рисунок 1.

В случае применения функций ТСМН в составе ЦОВ-112, данный интерфейс отсутствует.

2.2.3 Интерфейс 3

Интерфейс обеспечивает взаимодействие УОВЭОС с ЦОВ-112 административного центра субъекта Российской Федерации либо муниципального образования, не являющегося административным центром субъекта Российской Федерации, но в котором расположен основной ЦОВ-112, Подключение ЦОВ-112 к УОВЭОС является абонентским подключением.

Взаимодействие УОВЭОС с ЦОВ-112 выполняется по протоколу SIP. В целях определения обслуживающей сети для вызовов от пользователей сетей подвижной радиотелефонной связи, в потоке сигнализации при установлении соединения передается идентификатор обслуживающей сети⁷.

2.2.4 Интерфейс 4

Интерфейс обеспечивает взаимодействие конструктивно выделенного ТСМН и ЦОВ-112. ТСМН получает запрос от ЦОВ-112 на предоставление данных местоположения пользовательского оборудования, с которого поступил вызов в ЦОВ-112, и передачу сформированного ответа со стандартизированной структурой данных в ЦОВ-112.

В случае применения функций TCMH в составе ЦОВ-112 данный интерфейс отсутствует.

Взаимодействие ТСМН и ЦОВ-112 выполняется по протоколу HTTP (или HTTPS).

⁷ Взаимодействие УОВЭОС с ЦОВ-112 по резервным интерфейсам доступа на первичной скорости (PRI) по протоколу EDSS1 в настоящем документе не рассматривается, так как не обеспечивает передачу информации о месте нахождения пользовательского оборудования, включая идентификатор обслуживающей сети.

2.2.5 Интерфейс 5

Интерфейс обеспечивает взаимодействие конструктивно выделенных ТСМН либо ЦОВ-112 с ИС операторов связи путем передачи запроса от конструктивно выделенных ТСМН либо ЦОВ-112 и прием ответа.

Взаимодействие ТСМН и ЦОВ-112 выполняется по протоколу HTTP (или HTTPS).

2.2.6 Интерфейс 6

Интерфейс обеспечивает взаимодействие ТСКС-112, осуществляющего формирование и маршрутизацию экстренных SMS, с ЦОВ-112.

Взаимодействие осуществляется по протоколу SIP с включением информации о месте нахождения оконечного оборудования пользователя и идентификатора обслуживающей сети в сообщение по инициации сессии (INVITE).

2.2.7 Интерфейс 7

Интерфейс обеспечивает возможность делегирования оператором связи эксплуатирующей ТСМН организации информации о месте установки пользовательского оборудования и дополнительных данных, необходимых для реагирования.

Используется протокол взаимодействия HTTP (или HTTPS) с возможностью ручной загрузки/коррекции данных персоналом оператора связи или автоматизированной периодической загрузки/актуализации данных из информационных систем оператора связи.

2.3 Базовые сценарии взаимодействия

В разделе приведены базовые сценарии информационного взаимодействия компонентов инфраструктуры определения мест нахождения пользовательского

оборудования. Сценарии представлены в виде диаграмм последовательностей сообщений протоколов взаимодействия.

Сценарий 1. Прием вызова с передачей данных места нахождения методом «push» от УОВЭОС в ЦОВ-112 (с включением данных в сообщение протокола сигнализации SIP INVITE)

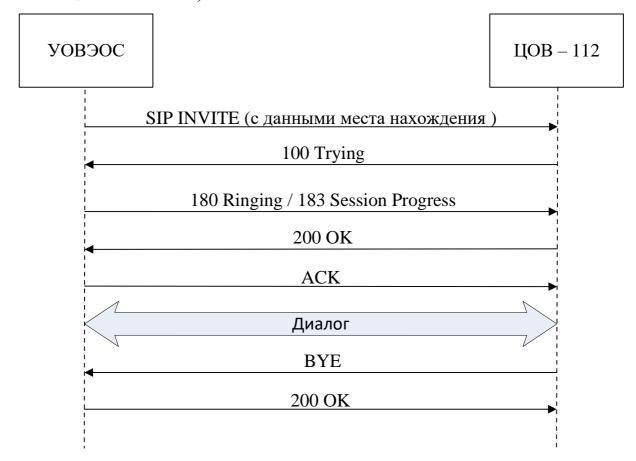


Рисунок 2 — Сценарий получения данных места нахождения в процессе установления соединения с передачей данных в ЦОВ-112 методом «push» путем включения в протокол сигнализации SIP (INVITE)

Сценарий 2. Прием вызова и определения места нахождения конструктивно выделенным ТСМН с последующей передачей методом «push» от УОВЭОС в ЦОВ-112 (с включением данных в сообщение INVITE протокола сигнализации SIP).

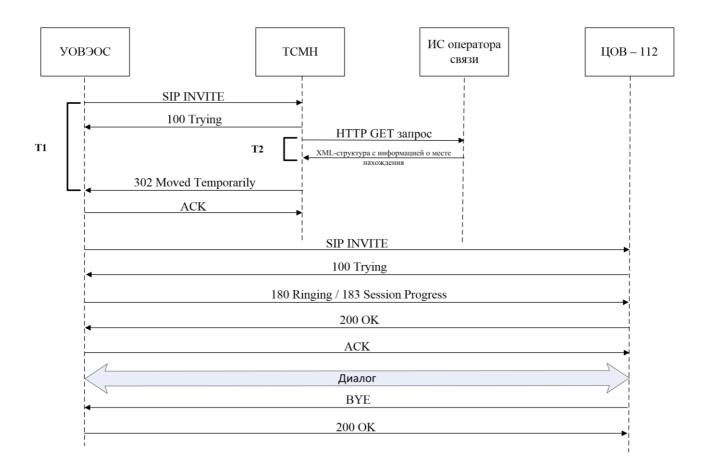


Рисунок 3 — Сценарий получения данных места нахождения в процессе установления соединения с передачей данных в ЦОВ-112 методом «push» путем включения в протокол сигнализации SIP с использованием конструктивно выделенного ТСМН

Сценарий 3. Получение данных места нахождения в процессе установления соединения и в процессе реагирования, а также дополнительных данных, необходимых для реагирования, методом «pull» с использованием конструктивно выделенного ТСМН.

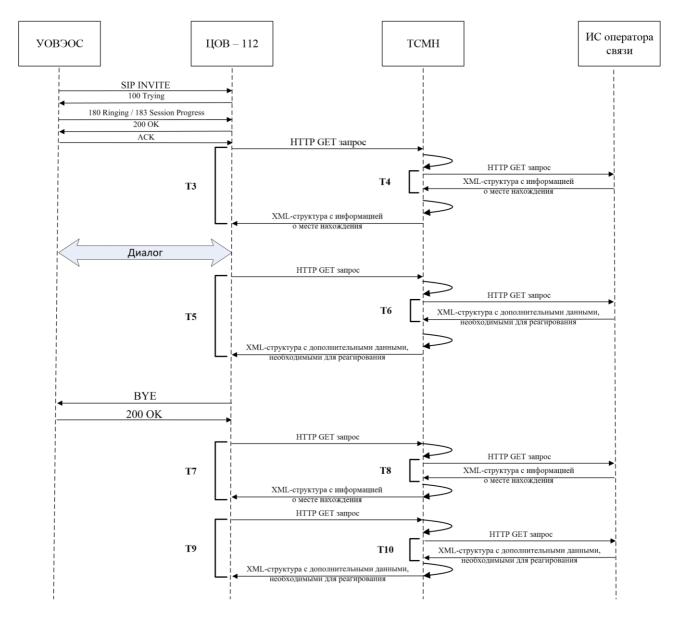


Рисунок 4 — Сценарий получения данных места нахождения в процессе установления соединения и в процессе реагирования, а также дополнительных данных, необходимых для реагирования, методом «pull» с использованием конструктивно выделенного ТСМН

Сценарий 4. Получение данных места нахождения в процессе установления соединения и в процессе реагирования, а также дополнительных данных, необходимых для реагирования, методом «pull»

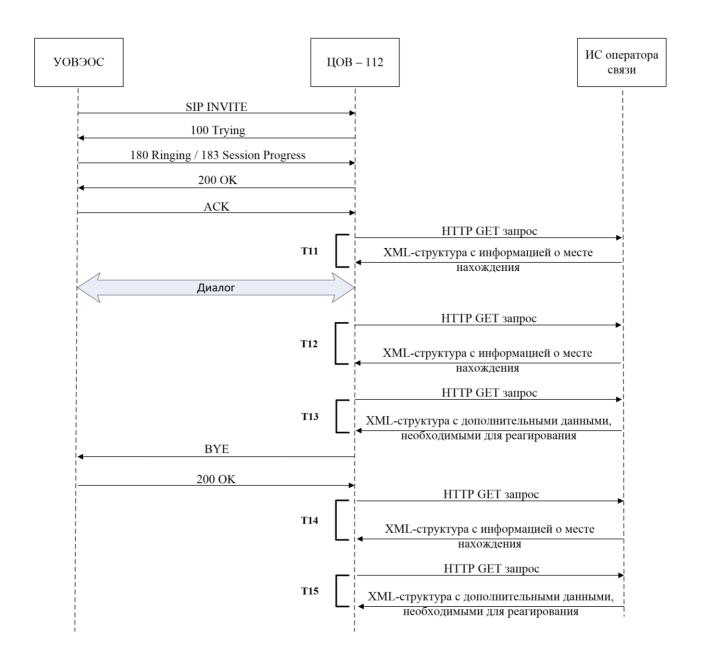


Рисунок 5— Сценарий получения данных места нахождения в процессе установления соединения и в процессе реагирования, а также дополнительных данных, необходимых для реагирования, методом «pull»

Сценарий 5. Передача экстренных коротких текстовых сообщений методом «push»

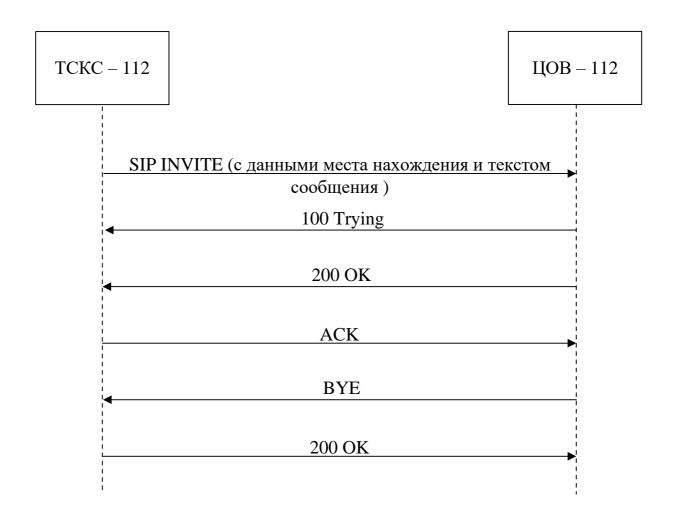


Рисунок 6 – Сценарий передачи экстренных коротких текстовых сообщений методом «push» с передачей данных места нахождения пользовательского оборудования, идентификатора обслуживающей сети и текста сообщения

3 Состав и структуры данных

3.1 Представление данных места установки пользовательского оборудования в виде адресного объекта

В случае, если информация о месте установки пользовательского оборудования имеется у оператора связи в виде адресных данных, то он

обеспечивает представление данных места установки пользовательского оборудования подключенного к сети телефонной связи в формате ФИАС [6].

Для представления адресной информации в целях передачи данных о месте установки пользовательского оборудования, могут использоваться следующие адресные объекты ФИАС:

- HOUSE сведения по номерам домов улиц городов и населенных пунктов, номера земельных участков и т.п.;
- HOUSEINT интервалы домов улиц городов и населенных пунктов;
- ROOM сведения о помещениях (квартирах, офисах, комнатах и т.д.);
- LANDMARK описание мест расположения имущественных объектов, которые невозможно однозначно идентифицировать с использованием вышестоящих адресообразующих элементов.

Подробное описание состава используемых объектов приведено в документе «Сведения о составе информации государственного адресного реестра Федеральной информационной адресной системы» [7].

Помимо параметров адресных объектов, формируемых в соответствии с правилами ФИАС, в структуре адресного объекта HOUSE могут присутствовать (при наличии данных у оператора связи) дополнительно следующие параметры:

- ENTRANCE - номер подъезда дома, корпуса, строения, владения; - LEVEL - номер этажа (подвальные этажи обозначаются знаком «-»); - ROOM - номер квартиры/офиса/помещения.

Схемы формируемых оператором связи XML-документов с адресными данными места установки пользовательского оборудования приведены в Приложении A.

Примеры XML-документов для каждого из вариантов представления адресных объектов приведена в Приложении Б (раздел Б.1).

Данные, сформированные в виде XML-структуры могут передаваться в составе SIP-сообщения (INVITE, 302 Moved Temporarily) (интерфейсы 1,2,3) при инициации и обработке вызова (Приложение Б, Б.4), либо при формировании ответного сообщения в структуре XML (интерфейсы 4 и 5) по HTTP (или HTTPS)запросу ТСМН или ЦОВ-112 (Приложение Б, Б.5).

3.2 Представление данных места нахождения пользовательского оборудования в виде географических координат

Место нахождения пользовательского оборудования, предоставляемое оператором связи в виде географических координат, описывается в соответствии с правилами, изложенными в:

- RFC3863 «Presence Information Data Format (PIDF)» [10];
- RFC4479 «A Data Model for Presence» [12];
- RFC4119 «A Presence-based GEOPRIV Location Object Format» [11];
- RFC5491 «GEOPRIV Presence Information Data Format Location Object (PIDF-LO) Usage Clarification, Considerations, and Recommendations» [13];
- "GML 3.1.1 PIDF-LO ShapeApplication Schema for use by the Internet Engineering Task Force (IETF)", Candidate OpenGIS Implementation Specification 06-142r1, Version: 1.0, April 2007 [8].

XML-структура описания места нахождения пользовательского оборудования должна соответствовать правилам:

- Элементы <tuple> и <person> для передачи информации не используются.
- Данные места нахождения пользовательского оборудования передаются в элементе <device> (RFC4479) <geopriv>/<location-info> (RFC4119).

- Элемент <geopriv>/<usage-rules> не используется⁸.
- Элемент <geopriv>/<method> не используется⁹.
- Элемент <device> содержится в единственном экземпляре.
- Атрибут id элемента <device> содержит уникальный идентификатор устройства.
- Элемент <device>/<deviceID> содержит идентификатор, значением которого могут быть MSISDN, IMSI, MAC-адрес устройства доступа и др..
- Элемент <device>/<timestamp> содержит время определения места нахождения пользовательского оборудования в формате ISO 8601 [9]: YYYY-MM-DDThh:mm:ss±hh.

Для целей системы-112 используются следующие варианты описания области нахождения пользовательского оборудования: точка, круг, кольцевой сектор.

Точка

Точка является простейшей формой представления данных места нахождения, которая применяется в случае, когда неопределенность в определении места нахождения пользовательского оборудования минимальна и точностью (для целей применения в системе-112) можно пренебречь. Описание в виде точки используется также как элемент описания в других формах представления (круг и круговой сектор, см. ниже).

Координаты точек, описывающих область нахождения пользовательского оборудования, задаются в системе WGS84 (долгота, широта), параметр «высота» в данном применении не используется.

⁸ Элемент может отсутствовать в структуре данных. При наличии элемента данные не анализируются.

⁹ Элемент может отсутствовать в структуре данных. При наличии элемента данные не анализируются.

Формат представления координат точки, описывающей область нахождения пользовательского оборудования, приведен в таблице 2.

Таблица 2. Формат представления координат точки.

Формат записи	Порядок следования координат	Пример	Точность
В градусах, в виде десятичной дроби	Долгота, широта	137.6539 55.7219	Не менее 4-х знаков после запятой

Для обозначения знака координат используются символы "+" (северная широта, восточная долгота) и "-" (южная широта, западная долгота), определяющие соответствующие полушария Земли. Использование символа "+" является необязательным.

Между значениями долготы и широты необходимо наличие знака «пробел» (одного или нескольких).

Пример:

```
<gml:Point srsName="urn:ogc:def:crs:EPSG::4326"
xmlns:gml="http://www.opengis.net/gml">
<gml:pos>37.6539 55.7219</gml:pos> </gml:Point>
```

Круг

Представление области нахождения пользовательского оборудования в виде круга используется в случае, когда метод определения координат места нахождения обладает погрешностью и позволяет оценить только область вероятного нахождения пользовательского оборудования, а сама область наиболее точно может быть описана в виде круга.

Круговая область задается относительно центральной точки (центра круга). Определение основано на одномерной геометрии: gml:CircleByCenterPoint, см. [8]. Точка – центр круга описывается аналогично описанию точки, приведенному выше.

Пример:

```
<gs:Circle srsName="urn:ogc:def:crs:EPSG::4326"
xmlns:gs="http://www.opengis.net/pidflo/1.0" xmlns:gml="http://www.opengis.net/gml">
<gml:pos>37.6539 55.7219</gml:pos>
<gml:radius uom="urn:ogc:def:uom:EPSG::9001">850</gml:radius> </gs:Circle>
```

Кольцевой сектор

Кольцевой сектор (далее - сектор) представляет собой участок круговой области, который ограничен дугой между двумя радиусами (рисунок 7). Форма сектора часто используется для определения местоположения пользовательского оборудования использующего радиодоступ.

Область в виде кольцевого сектора определяется центральной точкой круга, внутренним и внешним радиусом, начальным углом и углом раскрытия. На рисунке 6 показан образец кольцевого сектора с центральной точкой с, внутренним радиусом r_i , внешним радиусом r_o , начальным углом a_s и углом раскрытия a_o .

Центральная точка (gml:pos) определяется в виде двумерной координаты по правилам, указанным для точки (см. выше).

Внутренний радиус (gs:innerRadius) определяет минимальное расстояние от центральной точки до определяемой области. Внешний радиус (gs:outerRadius) определяет максимальное расстояние от центральной точки.

Начальный угол (gs:startAngle) и угол раскрытия (gs:openingAngle), определяют, где начинается и заканчивается сектор. Начало сектора определяется начальным углом, от начала сектора откладывается угол раскрытия и определяется радиус закрытия сектора. Углы измеряются по часовой стрелке с севера (от севера к востоку).

Сектор с внутренним радиусом, равным нулю, и равными начальным углом и углом раскрытия представляет собой круг.

Пример:

```
<gs:ArcBand srsName="urn:ogc:def:crs:EPSG::4326"
xmlns:gs="http://www.opengis.net/pidflo/1.0" xmlns:gml="http://www.opengis.net/gml">
<gml:pos>37.6539 55.7219</gml:pos>
<gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">1661.55</gs:innerRadius>
<gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">2215.4</gs:outerRadius>
<gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">266</gs:startAngle>
<gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">120</gs:openingAngle>
</gs:ArcBand>
```

На рисунке 7 приведено графическое представление кольцевого сектора.

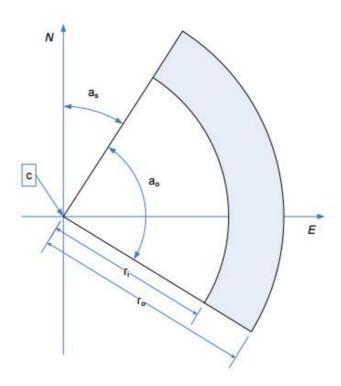


Рисунок 7 – Графическое представление кольцевого сектора

При представлении области нахождения пользовательского оборудования в виде круга и сектора, радиус круга задается в целых метрах.

При представлении области нахождения пользовательского оборудования в виде сектора, угловые параметры задаются в целых градусах.

Схемы формируемых оператором связи XML-документов с данными места установки пользовательского оборудования в виде географических координат приведены в Приложении A.

Примеры XML-документов для каждого из вариантов описания областей нахождения пользовательского оборудования приведена в Приложении Б (Б.2).

Данные, сформированные в виде XML-документа, передаются при инициации и обработке вызова:

- в составе SIP-сообщения INVITE (рисунок 1, интерфейсы 1,3),
- в составе SIP-сообщения «302 Moved Temporarily» (рисунок 1, интерфейс 2).
- в ответном сообщении на HTTP (или HTTPS)-запрос от ЦОВ-112 в TCMH, от ЦОВ-112 в ИС оператора связи, от ТСМН в ИС оператора связи (рисунок 1, интерфейсы 4 и 5).

Примеры XML-документов приведены в Приложении Б (Б.4, Б.5).

3.3 Представление дополнительных данных, необходимых для

организации реагирования

Состав дополнительной информации, необходимой для организации реагирования по вызову или сообщению о происшествии, предоставляемой оператором связи в систему-112, при обращении абонента-гражданина включает:

- фамилия, имя, отчество абонента; - место жительства (регистрации) абонента; - год рождения абонента.

Состав дополнительной информации, необходимой для организации реагирования по вызову или сообщению о происшествии, предоставляемой

оператором связи в систему-112, при обращении абонента-юридического лица включает:

- наименование (фирменное наименование) абонента; - юридический адрес абонента.

Схемы формируемых оператором связи XML-документов с дополнительной информацией, необходимой для организации реагирования, приведены в Приложении A (A.2).

Примеры передаваемых в рамках информационного обмена XMLдокументов приведены в Приложении Б (Б.3).

3.4 Состав и структура делегируемой информации

Оператор связи, передающий функцию по предоставлению в систему-112 информации об адресах установки пользовательского оборудования и дополнительной информации третьему лицу, должен обеспечить представление адресных данных места установки оконечного устройства в формате ФИАС или ином формате, согласованном с организацией, эксплуатирующей ТСМН.

Дополнительная информация передается в объеме, определенном в разделе 3.3 данного документа.

Информация об адресах установки пользовательского оборудования и дополнительной информации выгружается в виде текстового файла. Кодировка файла win1251. Поля записи в Файле разделяются символом «точка с запятой». Для пустых значений полей символы разделители полей следуют непосредственно друг за другом (;;).

Каждая запись начитается с новой строки и заканчивается символами «перевод строки» и «возврат каретки» (коды «0D» и «0A»).

Состав полей делегированной информации приведен в таблице 3.

Таблица 3. Описание полей делегированной информации

№	Название поля	Описание поля	Описание
1.	Номер телефона (пользовательского оборудования)	Номер телефона, выделенный пользователю телефонной сети общего пользования	Номер в формате, определенном ITU-Т в документе E.164

№	Название поля	Описание поля	Описание
2.	Адрес установки пользовательского оборудования в структурированном представлении (ФИАС)	Адрес установки пользовательского оборудования в виде кода ФИАС	При наличии
3.	Адрес установки пользовательского оборудования в структурированном текстовом представлении	Адрес установки пользовательского оборудования в виде иерархической последовательность пар, составляющих адрес	Иерархическая последовательность пар, составляющих адрес, вида: наименование адресного объекта и краткое наименование типа объекта, разделённых символом «~». Первой парой является субъект Российской Федерации и его сокращение. Например: «Ростовская~обл». Далее следуют пары, согласно иерархии подчиненности адресных объектов. Пары между собой также разделяются символом «~». Пример последовательности пар: «СанктПетербург~ г~ Александровская~ п~ Дружбы~ ул».
4.	Номер дома	Номер дома	
5.	Признак владения	Признак владения	Список значений в соответствии с ФИАС: – Не определено – Владение – Дом – Домовладение – Гараж
6.	Номер корпуса	Номер корпуса	
7.	Номер строения	Номер строения	

8.	Признак строения	Признак строения	Сп сок значений с расшифровкой в соответствии с ФИАС: — <пустое значение> (Не определено) — стр (строение) — сооружение — литер	
9.	Номер подъезда	Номер подъезда	Передается при наличии информации.	
10.	Номер этажа	Номер этажа	Передается при наличии информации.	
11.	Номер квартиры	Номер квартиры	Передается при наличии информации.	

No	Название поля	Описание поля	Описание
12.	Адрес установки пользовательского оборудования в не структурированном представлении	Адрес установки пользовательского оборудования в виде строки.	Обязательное
13.	Признак использования номера	1 — Номер задействован в предоставлении услуги 0 — Номер не задействован в предоставлении услуги	Передается при наличии информации.
14.	Тип абонента	1 - Юридическое лицо 2 – Физическое лицо	Обязательное
15.	Имя абонента/ Название организации	Имя абонента - для абонента гражданина. Фирменное наименование - для абонента юридического лица.	Обязательное
16.	Фамилия абонента	Фамилия абонента - для абонента физического лица.	Обязательное

17.	Отчество абонента	Отчество абонента - для абонента физического лица.	Обязательное
18.	Дата рождения абонента	Дата рождения абонента - для абонента физического лица.	В формате дд.мм.гггг. Например, 23.12.2016 Передается при наличии информации.
19.	Адрес проживания (регистрации) абонента/Юридический адрес абонента	Место жительства (регистрации) абонента - для абонента физического лица. Юридический адрес - для абонента юридического лица.	Адрес в неструктурированном представлении. Передается при наличии информации.
20.	Комментарий	Комментарий к адресу установки	Дополнительная информация, полезная при организации реагирования. Передается при наличии информации.

Поле 2 и 3-8 являются дублирующими. При формировании файла могут формироваться либо поле 2, либо 3-8, либо и 2 и 3-8 (состав полей определяется соглашением об информационном взаимодействии эксплуатирующей систему-112 организации с оператором связи).

4 Параметры протоколов взаимодействия

4.1 Форматы и значения параметров, используемых для передачи информации в сообщении IAM системы сигнализации ОКС №7 (ISUP) и системы сигнализации SIP-T/SIP-I

При использовании сигнализации ОКС №7 (ISUP) предполагается использование некоторых параметров протокола сигнализации, которые описаны ниже в данном разделе.

Homep местоположения / Location number ([17], раздел 3.30)

Номер местоположения (Location number) используется для целей системы 112 в качестве идентификатора обслуживающей сети, из которой поступил вызов по номеру «112» и должен однозначно определять оператора СПРС и информационную систему оператора СПРС в которую необходимо обращаться за данными места нахождения пользовательского оборудования. В качестве значения параметра «Location number» должен использоваться номер из ресурса географически не определяемых зон нумерации, выделенный оператору связи для использования в конкретном субъекте Российской Федерации, не задействованный для оказания услуг связи, или иная последовательность цифр однозначно определяющая обслуживающую сеть.

Структура параметра и формат полей параметра номер местоположения должны соответствовать рисунку 30 рекомендации МСЭ-Т Q.763/99 [19].

Например, если оператором в качестве идентификатора обслуживающей сети используется номер из ресурса географически не определяемых зон нумерации, должны быть использованы следующие значения полей параметра «Номер местоположения» (Location number parameter):

	8	7	6	5	4	3	2	1
1	O/E				NAI =	00001	00	
2	INN=1		NPI=001		APRI=0)1	SI=	11
3		2-ая цифра LN				1-ая	цифра LN	
4		4-ая цифра LN				3-ая	цифра LN	

5	5-я цифра LN	6-ая цифра LN
6	7-ая цифра LN	8-ая цифра LN
7		

где:

- O/E (ODD/Even) индикатор чётного или нечётного числа символов в адресе;
- NAI (Nature Address Indicator) индикатор типа адреса;
- INN (Internal Network Indicator) индикатор маршрутизации на внутрисетевой номер;
- NPI (Numbering Plan Indicator) индикатор плана нумерации;
- APRI (Address Presentation Restricted Indicator) индикатор ограничения предоставления адреса;
- SI (Screening Indicator) индикатор проверки.

Информация о совместимости параметра / Parameter compatibility information (Q.763/99, 3.41)

Структура параметра и формат полей параметра информация о совместимости (Parameter compatibility information parameter field) параметра должны соответствовать рисунку 41 рекомендации МСЭ-Т Q.763/99:

	8	7	6	5	4	3	2	1
1				1st upgrade	ed parameter			
2	Instruction indicators							
:								
-								
:			āī,	nth upgrade	ed parameter			

Кодирование полей параметра «Информация о совместимости параметра» (Parameter compatibility information) для обеспечения их прозрачного переноса в транзитной сети следующее:

8 7 6 5 4 3 2 1

1	00111111 – код параметра Location number
2	11000000 - Instruction indicators

где:

- 1) Nth upgraded parameter name коды добавленных параметров 00111111 код параметра Location number
- 2) Instruction indicators индикаторы инструкций

Формат подполя Instruction indicators subfield должен соответствовать рисунку 41.1 рекомендации МСЭ-Т Q.763/99:

	8	7	6	5	4	3	2	1
Γ	ext.	G	F	E	D	C	В	A
	ext.	0	N	M	L	K	J	I
Г				*	:		2	ž
					:			
			N	Aore instruct	tion indicate	ors if require	ed	

Используемые индикаторы инструкций:

bit <u>A</u> :	Transit at intermediate exchange indicator
0	transit interpretation
bit <u>B</u> :	Release call indicator
0	do not release call
bit <u>C</u> :	Send notification indicator
0	do not send notification
bit <u>D</u> :	Discard message indicator
0	do not discard message (pass on)
bit <u>E</u> :	Discard parameter indicator
0	do not discard parameter (pass on)
bits <u>G F</u> :	Pass on not possible indicator
10	discard parameter
Extension indic	cator (ext.)
1 la	st octet

Для обеспечения переноса сигнальной информации в транзитной сети, функционирующей с использованием подсистемы пользователя ЦСИС (ISUP) системы сигнализации ОКС №7 согласно спецификации ISUP-R-2000, передаваемый параметр Location number должен сопровождаться в сообщении IAM

параметром Parameter compatibility information, определяющим продолжение установления соединения при невозможности приема, обработки или передачи в исходящем направлении параметра Location number (таблица 4).

Таблица 4. Передача идентификатора обслуживающей сети в параметре протокола ISUP системы сигнализации ОКС№7

Контент	Система сигнализации / протокол / сообщение	Формат представления данных (параметр)	Примечания
Номер из ресурса географически не определяемых зон нумерации, выделенного оператору связи для использования в конкретном субъекте Российской Федерации, не задействованный для оказания услуг связи, или иная последовательность цифр однозначно определяющая обслуживающую сеть. В поле address signal	OKC №7 / ISUP / IAM	Q.763/99, 3.30 Location number (национальная кодировка)	Уникальное в пределах РФ обозначение обслуживающей сети и информационной системы оператора подвижной радиотелефонной связи.
Номер из ресурса географически не определяемых зон нумерации, выделенного оператору связи для использования в конкретном субъекте Российской Федерации, не задействованный для оказания услуг связи, или иная последовательность цифр однозначно определяющая обслуживающую сеть. В поле address signal	SIP-T/SIP-I / INVITE	Инкапсуляция параметра Location number	Уникальное в пределах РФ обозначение обслуживающей сети и информационной системы оператора подвижной радиотелефонной связи.

4.2 Общие правила включения в сообщения протокола SIP идентификатора обслуживающей сети СПРС и данных о месте нахождения пользовательского оборудования

Форматы представления информации о месте нахождения пользовательского оборудования соответствуют изложенным в приложении А данного документа.

При обслуживании вызова от пользователя сети подвижной радиотелефонной связи в сообщение SIP INVITE включается заголовок P-VisitedNetwork-ID.

SIP INVITE сообшения P-Visited-Network-ID Заголовок содержит предварительно определенный номер из номеров негеографической зоны выделенных оператору обслуживающей сети, нумерации, иную последовательность цифр, однозначно определяющую обслуживающую сеть, обеспечивающую уникальную идентификацию обслуживающей сети подвижной радиотелефонной связи на территории Российской Федерации.

Включение данных о месте нахождения пользовательского оборудования в сообщение SIP INVITE выполняется в соответствии с документом RFC6442 [15] и настоящим документом.

Таблица 5 – Передача идентификатора обслуживающей сети и информации о месте нахождения (протокол SIP)

Контент	Система сигнализации / протокол / сообщение	Формат представления данных (параметр)	Примечания
Номер из ресурса географически не определяемых зон нумерации, выделенного оператору связи для использования в конкретном субъекте Российской Федерации, не задействованный для оказания услуг связи, или иная последовательность цифр однозначно определяющая обслуживающую сеть. В поле address signal	SIP/SIP NNI / INVITE	Заголовок "P-Visited- Network-ID"	Уникальное в пределах РФ обозначение обслуживающей сети и информационной системы оператора подвижной радиотелефонной связи.

Координата в системе координат WGS84	SIP/SIP NNI /	RFC6442, RFC5491	Двумерная геодезическая координата места нахождения
	INVITE	GEOPRIV PIDF- LO	пользовательского оборудования с указанием точности

Примеры инкапсуляции в сообщении INVITE протокола SIP идентификатора обслуживающей сети и данных о месте нахождения пользовательского оборудования приведены в Приложении Б (Б.4).

4.3 Описание и параметры протокола взаимодействия УОВЭОС с ТСМН

Взаимодействие УОВЭОС и ТСМН производится по протоколу SIP (рисунок 1, интерфейс 2).

При получении от УОВЭОС команды INVITE, TCMH определяет место нахождения пользовательского оборудования с которого поступи вызов (путем обращения в ИС оператора связи) и формирует ответ в сторону УОВЭОС в виде сообщения (команды) «302 Moved Temporarily» протокола SIP.

Правила формирования данных и их инкапсуляции в передаваемое сообщение протокола SIP:

- 1. Идентификатор обслуживающей сети помещается в заголовок P-VisitedNetwork-ID, сообщения «302 Moved Temporarily». В случае отсутствия идентификатора обслуживающей сети, заголовок P-Visited-Network-ID может отсутствовать или содержать пустое значение.
- 2. В поле contact помещаются данные (номер RNC) для ремаршрутизации вызова (адреса основного и резервного ЦОВ-112).
- 3. Данные места нахождения пользовательского оборудования включаются в сообщение «302 Moved Temporarily» в качестве составного (multipart) сообщения. В случае отсутствия данных места нахождения, составное сообщение отсутствует.

- 4. Правила кодирования и формат структуры данных о месте нахождения пользовательского оборудования соответствуют формату структуры данных информации места нахождения пользовательского оборудования, приведенному в Приложении A (A.1).
- 5. После приема от ТСМН команды ремаршрутизации (команды «302 Moved Temporarily» с включенной дополнительной информацией о местоположении пользовательского оборудования), УОВЭОС формирует команду INVITE, используя полученные данные. Данные места нахождения (при наличии), включаются в команду INVITE в качестве составного (multipart) сообщения.

Идентификатор обслуживающей сети помещается в заголовок P-VisitedNetwork-ID команды INVITE.

Пример инкапсуляции в сообщение ремаршрутизации («302 Moved Temporarily») протокола SIP данных о месте нахождения пользовательского оборудования приведены в Приложении Б (Б. 4).

В процессе организации взаимодействия УОВЭОС с ТСМН следует руководствоваться следующими значениями временных параметров (таймеров), которые указаны в таблице 6.

Таблица 6. Значения таймеров при организации взаимодействия УОВЭОС с ТСМН

Обозначение таймера	Взаимодействующие компоненты	Описание вида взаимодействия	Предельное значение (секунды)	Диаграмма
T1	УОВЭОС –	Запрос данных	3	Рисунок 3
	TCMH	местонахождения		
		пользовательского		
		оборудования		

Для целей организации взаимодействия по протоколу SIP следует руководствоваться временными параметрами, определенными в [16].

4.4Описание и параметры протокола взаимодействия TCMH/ЦОВ-112 с ИС оператора связи

Получение информации о месте нахождения пользовательского оборудования от ИС оператора связи по запросу (рисунок 1, интерфейс 5) должно обеспечиваться путем формирования HTTP (HTTPS) GET запроса в информационную систему оператора связи.

Правила взаимодействия определяются в документе RFC5985 [14]. В качестве идентификатора оконечного абонентского оборудования в запросе передается его телефонный номер в формате E.164.

Пример HTTPS-запроса:

https://LBS-URL/GetAbonentLocation?uid=user&pwd=secret&anumber=79265322777&method=passive

Где:

- uid, pwd логин и пароль для доступа к информационной системе оператора сотовой связи;
- aNumber номер с которого поступил экстренный вызов;
- method метод поиска местоположения абонента (анализируется только операторами СПРС, порядок использования определен в таблице 7):
 - "passive" гарантированное время отклика, не гарантированная актуальность данных на момент запроса,
 - "active" не гарантированное время отклика, гарантированная актуальность данных на момент запроса.

Получаемый ответ содержит XML-структуру с результатом выполнения запроса и, в случае успешного определения места нахождения, данные о месте нахождения пользовательского оборудования. Данные о месте нахождения формируются в соответствии с правилами, изложенными в настоящем документе.

Ниже приведена общая структура XML—документа ответа ИС оператора связи на запрос о месте нахождения пользовательского оборудования.

Корневым элементом XML—документа, является элемент <response>. Данный элемент содержит дочерние элементы:

- <resultCode> Обязательный элемент. Содержит информацию о результате обработки запроса ИС оператора связи.
- <resultDescription> Опциональный элемент. Описание ошибки в случае невозможности предоставить информацию о месте нахождения абонентской станции.

Коды ошибок и их описания приведены в Приложении В (таблица В.2).

Примеры XML-структуры ответного сообщения на запрос дополнительной информации об месте нахождения пользовательского оборудовании приведены в Приложении Б (Б.5).

Схемы XML-документов с информацией о месте нахождения приведены в Приложении A (A.1, A.3).

Получение дополнительной информации от ИС оператора связи по запросу (рисунок 1, интерфейс 5) должно обеспечиваться путем формирования HTTP (HTTPS) GET запроса в информационную систему оператора связи.

Правила взаимодействия определяются в документе RFC5985 [14]. В качестве идентификатора оконечного абонентского оборудования в запросе передается его телефонный номер в формате E.164.

Пример HTTPS-запроса:

https://LBS-URL/GetAbonentInfo?uid=user&pwd=secret& aNumber=79265322777

Где:

<response>

- uid, pwd логин и пароль для доступа к информационной системе оператора сотовой связи;
- aNumber номер, с которого поступил экстренный вызов;

Получаемый ответ содержит XML-структуру с дополнительной информацией. Ниже приведена общая структура XML-документа ответа информационной системы оператора связи на запрос дополнительной информации:

```
<resultCode>0</resultCode>
<resultDescription></resultDescription>
<AbonentInfo>
```

</AbonentInfo > </response>

Корневым элементом XML-документа, является элемент <response>. Данный элемент содержит дочерние элементы:

- <resultCode> Обязательный элемент. Содержит информацию о результате обработки запроса ИС оператора связи.
- <resultDescription> Опциональный элемент. Описание ошибки в случае невозможности предоставить дополнительную информацию.

В случае успешного определения дополнительной информации элемент <resultCode> содержит значение 0. В случае возникновения ошибок при выполнении запроса значение элемента отлично от нуля и элемент <resultDescription> содержит описание ошибки.

Коды ошибок и их описания приведены в Приложении В (таблица В.3).

Схема XML-документа с дополнительной информацией приведена в Приложении A (A.2).

Примеры XML-структуры ответного сообщения на запрос дополнительной информации приведены в Приложении Б (Б.3).

В процессе организации взаимодействия ТСМН/ЦОВ-112 с ИС оператора связи следует руководствоваться следующими значениями временных параметров (таймеров), которые указаны в таблице 7.

Таблица 7. Значения таймеров при организации взаимодействия TCMH/ЦОВ-112 с ИС оператора связи

Обозначение таймера	Взаимодействующие компоненты	Описание вида взаимодействия	Предельное значение	Диаграмма
			(секунды)	
T2	ТСМН – ИС	Запрос данных	<3	Рисунок 3
	оператора связи	местонахождения		
		пользовательского		
		оборудования в процессе		
		установления соединения.		
		Параметр method в запросе		
		должен принимать значение "россімо"		
T4	ТСМН – ИС	"passive". Запрос данных	10	Рисунок 4
17	оператора связи	местонахождения	10	тисунок ч
		пользовательского		
		оборудования до ответа		
		оператора.		
		Параметр method в запросе должен		

		принимать значение "passive".		
Т6	ТСМН – ИС оператора связи	Запрос дополнительных данных, необходимых для реагирования, после ответа оператора.	<300	Рисунок 4
Т8	ТСМН – ИС оператора связи	Запрос данных местонахождения абонента после завершения опроса заявителя. Параметр method в запросе должен принимать значение "active".	10	Рисунок 4

T10	ТСМН – ИС оператора связи	Запрос дополнительных данных, необходимых для реагирования после завершения опроса заявителя.	<300	Рисунок 4
T11	ЦОВ – 112 – ИС оператора связи	Запрос данных местонахождения пользовательского оборудования до ответа оператора. Параметр method в запросе должен принимать значение "passive".	10	Рисунок 5
T12	ЦОВ-112 – ИС оператора связи	Запрос данных местонахождения пользовательского оборудования в процессе опроса заявителя. Параметр method в запросе должен принимать значение "active".	10	Рисунок 5
T13	ЦОВ–112 – ИС оператора связи	Запрос дополнительных данных, необходимых для реагирования в процессе опроса заявителя	300	Рисунок 5
T14	ЦОВ-112 – ИС оператора связи	Запрос данных местонахождения пользовательского оборудования после завершения опроса заявителя. Параметр method в запросе должен принимать значение "active".	10	Рисунок 5
T15	ЦОВ–112 – ИС оператора связи	Запрос дополнительных данных, необходимых для реагирования, после завершения опроса	300	Рисунок 5
		заявителя		

4.5 Описание и параметры протокола взаимодействия ЦОВ-112 с ТСМН

Взаимодействие ЦОВ-112 и конструктивно выделенного ТСМН при запросе/получении информации о месте нахождения пользовательского терминала

и дополнительной информации, необходимой для реагирования, осуществляется по протоколу HTTP (или HTTPS) (рисунок 1, интерфейс 4) в соответствии со следующими правилами.

Информация запрашивается посредством отправки со стороны ЦОВ–112 на TCMH HTTP (HTTPS) GET запроса. HTTP (HTTPS) GET запрос имеет следующую структуру:

http://[host]:port/context?function=<function>&numberOfDevice=<numberOfDevice>&AccessNetworkID=<AccessNetworkID>

где:

- function тип запроса (getInfo запрос дополнительной информации, getLocation запрос информации о месте нахождения);
- numberOfDevice идентификатора оконечного абонентского оборудования в формате Е.164;
- AccessNetworkID (не обязательный) идентификатор обслуживающей сети, если определен.

В зависимости от вида запрошенных данных, ТСМН формирует ответное сообщение, которое включает в себя XML-документ с полученными от ИС оператора связи данными. Структура документов аналогична приведенным в разделе 4.4.

В процессе организации взаимодействия ЦОВ-112 с ТСМН следует руководствоваться следующими значениями временных параметров (таймеров), которые указаны в таблице 8.

Таблица 8. Значения таймеров при организации взаимодействия ЦОВ-112 с ТСМН

Обозначение таймера	Взаимодействующие компоненты	Описание вида взаимодействия	Предельное значение (секунды)	Диаграмма
Т3	ЦОВ–112 – ТСМН	Запрос данных местонахождения пользовательского оборудования до ответа оператора и в процессе опроса заявителя	10	Рисунок 4
T5	ЦОВ–112 – ТСМН	Запрос дополнительных данных, необходимых для реагирования, после ответа оператора	300	Рисунок 4
Т7	ЦОВ–112 – ТСМН	Запрос данных местонахождения пользовательского оборудования после завершения опроса заявителя	10	Рисунок 4
Т9	ЦОВ–112 – ТСМН	Запрос дополнительных данных, необходимых для реагирования после завершения опроса заявителя	300	Рисунок 4

4.6 Описание и параметры протокола передачи экстренных коротких текстовых сообщений от ТСКС-112 в ЦОВ-112

Передача от ТСКС-112 в ЦОВ-112 текста экстренного короткого текстового сообщения и данных о месте нахождения пользовательского оборудования, с которого было отправлено сообщение на номер «112», обеспечивается методом «push» по протоколу SIP (рисунок 1, интерфейс 6).

Текст экстренного короткого сообщения совместно с информацией о месте нахождения абонентской станции включается в команду INVITE протокола SIP в виде составного сообщения.

В команду INVITE также включается заголовок P-Visited-Network-ID, содержащий идентификатор обслуживающей сети, в соответствии с правилами, изложенными в разделе 4.2 данного документа.

Первая часть составного сообщения содержит служебную информацию, SDPзаголовок команды INVITE.

SDP-заголовок является статичным и не используется в процессе приема и обработки информации.

Пример SDP-заголовка:

Content-Type: application/sdp

v=0 o=TSKS 0 0 IN IP4

0.0.0.0 s = c = IN IP4 0.0.0.0

t=0 0 m=audio 1234

RTP/AVP 8 a=inactive

Вторая часть составного сообщения содержит информацию о месте нахождения пользовательского оборудования в виде XML-документа, который формируется в соответствии с правилами, изложенными в Приложении A (A.1).

Третья часть составного сообщения команды INVITE имеет тип text/plain и содержит текст экстренного короткого сообщения.

Для целей организации взаимодействия ТСКС-112 с ЦОВ-112 по протоколу SIP (передачи коротких текстовых сообщений и данных места нахождения пользовательского оборудования) следует руководствоваться кодами результатов и другими параметрами протокола, определенными в [16].

Пример экстренного короткого текстового сообщения, направляемого от ТСКС-112 оператора СПРС в ЦОВ-112 по протоколу SIP приведен а Приложении Б (Б.4).

Приложение A. Описание XML-схемы, используемой для формирования XML-документов

Структура состоит из строк, содержащих элементы и атрибуты, а также их значения. Реквизиты могут быть элементами или атрибутами. Элемент – составная часть XML-документа, представляющая собой некоторую законченную смысловую единицу. Элемент может содержать один или несколько вложенных элементов и/или атрибутов.

Атрибут представляет собой составную часть элемента, задающую его параметры.

Имена элементов и атрибутов являются регистрозависимыми и должны совпадать с шаблоном XML. В сообщениях атрибуты с одинаковым именем должны иметь один и тот же смысл и структуру. Порядок следования элементов должен совпадать с шаблоном.

Bce XML документы должны иметь единственный корневой элемент.

Описание информационных объектов приводится в табличной форме. Таблица

A. 1

Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация		
<наименование элемента>							

В таблицах используются следующие обозначения.

В графе «Код элемента» записывается условное обозначение элемента сообщения.

В графе «Содержание элемента» записывается условное обозначение атрибута или другого элемента, входящего в состав элемента.

В графе «Тип» записывается один из символов О, Н, ОА, НА, У. Символы имеют следующий смысл:

О – обязательный реквизит;

Н – необязательный реквизит;

ОА – обязательный атрибут;

НА – необязательный атрибут;

У – условно-обязательный реквизит, может добавляться к указанным выше символам.

Обязательный реквизит – это реквизит, который должен обязательно присутствовать в файле.

Необязательный реквизит – это реквизит, который может как присутствовать, так и отсутствовать в файле.

Обязательный атрибут – это атрибут, который должен обязательно присутствовать в элементе.

Необязательный атрибут — это атрибут, который может как присутствовать, так и отсутствовать в элементе.

Условно-обязательный реквизит — это реквизит, присутствие которого в структуре обусловлено значениями, наличием или отсутствием других реквизитов этой же структуры. В случае выполнения условия присутствия (УП) условно-обязательный реквизит по всем своим свойствам приравнивается к обязательному, а в случае невыполнения - к необязательному.

В графе «Формат» для каждого атрибута указывается символ формата, а вслед за ним в круглых скобках максимальная длина атрибута. Если круглых скобок нет, то длина атрибута произвольна.

Символы формата соответствуют вышеописанным обозначениям:

T - < текст>;

N – <число>;

D - <дата>;

 $ID - \langle идентификатор \rangle;$

URI – <универсальный идентификатор ресурса>;

S - <элемент>; составной элемент, описывается отдельно;

SA – <элемент>; составной элемент, содержащий атрибут, описывается после описания основного элемента;

Если значением атрибута является дробное десятичное число, то в графе «Формат» указывается формат его представления в виде N(m.k), где m — максимальное количество знаков в числе, включая целую и дробную часть числа, десятичную точку и знак "—" (минус), а k — число знаков дробной части числа.

Если элемент содержит атомарное значение, то в графе «Формат», после элемента формата указывается символ соответствующего формата.

В графе «Наименование» указывается наименование элемента или атрибута.

Если атрибут имеет в рамках данного формата ограниченное количество возможных значений, то в графе «Дополнительная информация» указывается список этих значений.

А.1 Местоположение пользовательского оборудования

Таблица А. 2 – Описание корневого элемента

Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация	
Корневой элемент						

presence					Рисунок А.1
	device	О	SA	Содержит информацию о пользовательском оборудовании	
	entity	О	URI	Содержит телефонный номер абонента	
device					Рисунок А.2
	geopriv	О	S	Содержит данные места нахождения пользовательского оборудования	
	deviceID	О	S, URI		
	timestamp	0	S, D	Содержит время определения места нахождения пользовательского оборудования в формате ISO 8601 (YYYY-MMDDThh:mm:ss±hh)	
	id	OA	ID	Уникальный идентификатор	
geopriv					Рисунок А.3
	location-info	О	S		
location-info					Рисунок А.3
	location	О	S		
location					Рисунок А.4
	Point	ОУ	S	Данные места нахождения пользовательского оборудования в виде точки	
	Circle	ОУ	S	Данные места нахождения пользовательского оборудования в виде круга	
	ArcBand	ОУ	S	Данные места нахождения пользовательского оборудования в виде сектора	
	civicAddress	ОУ	S	Адрес установки пользовательского оборудования	
Point					Рисунок А.5
	pos	О	S, T(17)	Координаты точки в системе WGS84. Порядок следования	
Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация

				координат: Долгота, Широта	
Circle					Рисунок А.6
	pos	О	S, T(17)	Координаты центра круга в системе WGS84. Порядок следования координат: Долгота, Широта	
	radius	О	S, N	Радиус круга, в целых метрах	
ArcBand					Рисунок А.7
	pos	О	S, T(17)	Координаты центра сектора в системе WGS84. Порядок следования координат: Долгота, Широта	
	innerRadius	О	S, N	Внутренний радиус сектора в целых метрах	
	outerRadius	О	S, N	Внешний радиус сектора в целых метрах	
	startAngle	О	S, N	Начальный угол сектора в целых градусах	
	openingAngle	О	S, N	Угол раскрытия сектора в целых градусах	
civicAddress					Рисунок А.8
	HOUSE	УО	S	Адрес установки пользовательского оборудования в формате ФИАС	
	HOUSEINT	УО	S, T(36)	Идентификатор интервала домов в формате ФИАС	
	LANDMARK	УО	S, T(36)	Идентификатор ориентира в формате ФИАС	
	ROOM	УО	S, T(36)	Глобальный уникальный идентификатор помещения в формате ФИАС	
	ADDRESSTEX T	Н	S, T	Адрес установки пользовательского оборудования в виде строки	
HOUSE					Рисунок А.9
	HOUSEGUID	О	S, T(36)	Идентификатор дома в формате ФИАС	
	ENTRANCE	Н	S, T	Номер подъезда	
	LEVEL	Н	S, T	Номер этажа	

RC	OOM H	S	T 2	Номер квартиры	

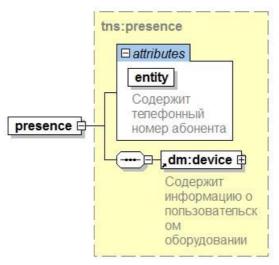
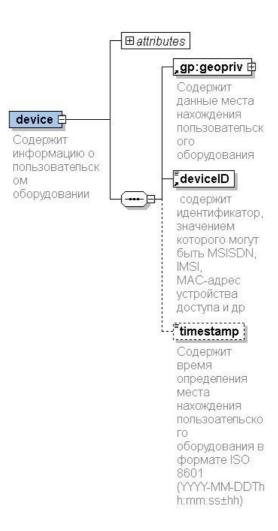



Рисунок А. 1 – Общая структура XML-документа, содержащего данные места нахождения пользовательского оборудования

Рисунок А. 2 – Структура XML-документа, содержащего информацию о пользовательском оборудовании и данные места нахождения пользовательского оборудования

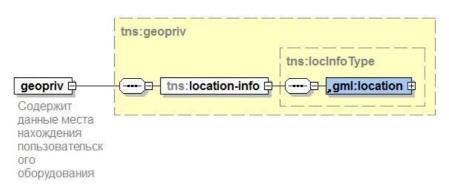


Рисунок А. 3 — Вложенные структуры XML-документа, содержащего данные места нахождения пользовательского оборудования

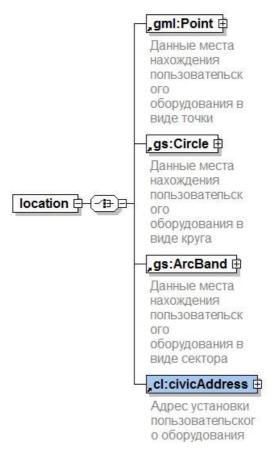


Рисунок А. 4 — Возможные варианты представления данных места нахождения пользовательского оборудования в XML-документе

Рисунок А. 5 – Структура XML-документа, содержащего представление места нахождения пользовательского оборудования в виде точки

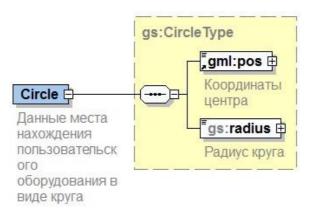


Рисунок А. 6 – Структура XML-документа, содержащего представление места нахождения пользовательского оборудования в виде круга

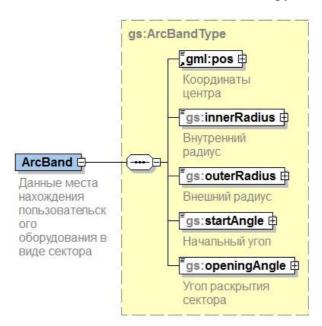


Рисунок А. 7 — Структура XML-документа, содержащего представление места нахождения пользовательского оборудования в виде сектора

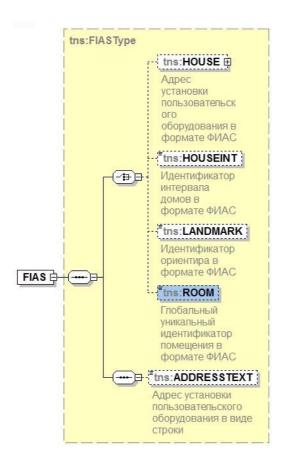


Рисунок А. 8 –Представление информации о месте установки пользовательского оборудования в виде адресного объекта в формате ФИАС

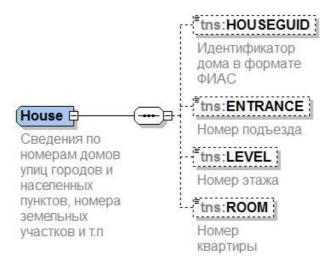


Рисунок A. 9 – Структура XML-документа,

содержащего представление информации о месте установки пользовательского оборудования в виде адресного объекта «HOUSE» с дополнительной информацией

А.2 Дополнительная информация, необходимая для реагирования

Таблица А. 3

Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация					
	Корневой элемент									
AbonentInfo				Содержит дополнительную информацию, необходимую для реагирования	Рисунок А.10					
	person	УО	S	Дополнительная информация абонента физического лица						
	organization	УО	S	Дополнительная информация абонента юридического лица						
person				Дополнительная информация абонента физического лица	Рисунок А.11					
	name	Н	S, T	Имя абонента						
	secondName	Н	S, T	Отчество абонента						
	surname	Н	S, T	Фамилия абонента						
	address	Н	S, T	Адрес регистрации абонента						
	birthDate	Н	S, D	Дата рождения абонента						
organization					Рисунок А.12					
	name	Н	S, T	Название абонента юридического лица						
	address	Н	S, T	Адрес регистрации абонента юридического лица						

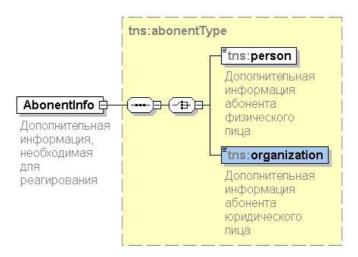


Рисунок А. 10 – Структура XML-документа, содержащего дополнительную информацию

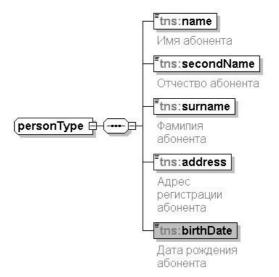


Рисунок А. 11 – Структура XML-документа, содержащего информацию об абоненте физическом лице

Рисунок А. 12 – Структура XML-документа, содержащего информацию об абоненте юридическом лице

А.3 Структура ответа ИС оператора связи на запрос о месте нахождения пользовательского оборудования

Таблица А. 4

Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация			
Корневой элемент								
response					Рисунок А.13			
	resultCode	О	S, N	Результат обработки запроса информационной системой оператора связи				
	resultDescription	О	S, T	Описание ошибки в случае				
Код элемента	Содержание элемента	Тип	Формат	Наименование	Дополнительная информация			
				невозможности предоставить информацию о месте нахождения абонентской станции				
	presence	Н	S	Данные местоположения мобильного терминала или адрес установки телефонного аппарата	Описание элемента приведено в подразделе A.1			
	AbonentInfo	Н	S	Дополнительная информация, необходимая для реагирования	Описание элемента приведено в подразделе A.2			

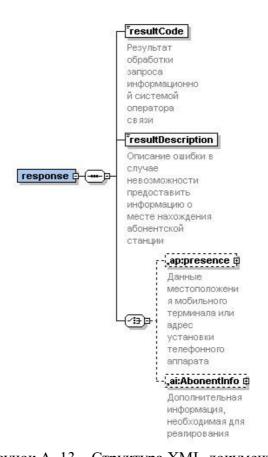


Рисунок А. 13 — Структура XML-документа, содержащего ответ от ИС оператора связи Приложение Б. Примеры структуры XML-документов и сообщений протокола SIP

Б.1 Примеры структуры XML-документов для представления информации места нахождения в виде адресных объектов

Пример структуры XML-документа для представления информации места нахождения в виде адресного объекта «HOUSE»

```
<?xml version="1.0" encoding="UTF-8"?>
- - - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="74957718100"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:fs="http://www.svetets.ru/fias"
 xmlns:gml="http://www.opengis.net/gml" xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
      - <gp:geopriv>
          - <gp:location-info>
              <gml:location>
                - <cl:civicAddress>
                    <fs:HOUSE>
                         <fs:HOUSEGUID>c9f9fe40-b9a7-461c-bf98-0338c90f242b</fs:HOUSEGUID>
                         <fs:ENTRANCE>3</fs:ENTRANCE>
                         <fs:LEVEL>5</fs:LEVEL>
                         <fs:ROOM>90</fs:ROOM>
                      </fs:HOUSE>
                  </cl:civicAddress>
               </gml:location>
           </gp:location-info>
        </qp:geopriv>
        <dm:deviceID>74957718100</dm:deviceID>
        <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
 </presence>
```

Пример структуры XML-документа для представления информации места нахождения в виде адресного объекта «HOUSEINT»

```
<?xml version="1.0" encoding="UTF-8"?>
- - - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="74957718100"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis.net/gml"
 xmlns:fs="http://www.svetets.ru/fias" xmlns:cl="urn:ietf:params:xml:ns:pidf:qeopriv10:civicLoc"
 xmlns:qp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
      - <gp:geopriv>
          - <gp:location-info>
              <gml:location>
                 - <cl:civicAddress>
                      <fs:HOUSEINT>f38f2071-558e-42d1-b1c1-676cee68ea3c</fs:HOUSEINT>
                  </cl:civicAddress>
               </gml:location>
           </gp:location-info>
        </gp:geopriv>
        <dm:deviceID>74957718100</dm:deviceID>
        <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
 </presence>
```

Пример структуры XML-документа для представления информации места нахождения в виде адресного объекта «LANDMARK»

```
<?xml version="1.0" encoding="UTF-8"?>
- - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="74957718100"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis.net/gml"
 xmlns:fs="http://www.svetets.ru/fias" xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
       - <gp:geopriv>
          - <gp:location-info>
              - <gml:location>
                - <cl:civicAddress>
                      <fs:LANDMARK>ae0b9723-ebe3-46cb-a73a-1db3846980ee</fs:LANDMARK>
                  </cl:civicAddress>
               </gml:location>
           </gp:location-info>
        </gp:geopriv>
        <dm:deviceID>74957718100</dm:deviceID>
        <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
 </presence>
```

Б.2 Примеры структуры XML-документов для представления информации места нахождения в виде географических координат

Пример структуры XML-документа для представления информации места нахождения в виде точки.

```
<?xml version="1.0" encoding="UTF-8"?>
- - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="79313275383"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gs="http://www.opengis.net/pidflo/1.0" xmlns:gml="http://www.opengis.net/gml"
 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
       - <gp:geopriv>
          - <gp:location-info>
              - <gml:location>
                 - <gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
                      <gml:pos>30.2237 59.9448</gml:pos>
                  </gml:Point>
               </gml:location>
            </gp:location-info>
        </gp:geopriv>
        <dm:deviceID>250999876543210</dm:deviceID>
        <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
 </presence>
```

Пример структуры XML-документа для представления информации места нахождения в виде круга.

```
<?xml version="1.0" encoding="UTF-8"?>
- - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="79313275383"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gs="http://www.opengis.net/pidflo/1.0" xmlns:gml="http://www.opengis.net/gml"
 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="E6196E72-B103-453B-B2FF-CFCE563C7C4A">
       - <gp:geopriv>
          - <gp:location-info>
              <gml:location>
                  <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                      <qml:pos>30.2237 59.9448</qml:pos>
                      <gs:radius uom="urn:ogc:def:uom:EPSG::9001">250</gs:radius>
                  </gs:Circle>
               </gml:location>
            </gp:location-info>
        </gp:geopriv>
        <dm:deviceID>250999876543210</dm:deviceID>
        <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
 </presence>
```

Пример структуры XML-документа для представления информации места нахождения в виде кругового сектора.

```
<?xml version="1.0" encoding="UTF-8"?>
- - - resence xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd" entity="79313275383"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gs="http://www.opengis.net/pidflo/1.0" xmlns:gml="http://www.opengis.net/gml"
 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns="urn:ietf:params:xml:ns:pidf">
   - <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
      - <gp:geopriv>
          - <gp:location-info>
              <gml:location>
                 <gs:ArcBand srsName="urn:ogc:def:crs:EPSG::4326">
                     <gml:pos>30.2237 59.9448
                     <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">150</gs:innerRadius>
                     <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">450</gs:outerRadius>
                     <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:startAngle>
                     <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:openingAngle>
                  </gs:ArcBand>
               </gml:location>
           </gp:location-info>
        </gp:geopriv>
        <dm:deviceID>250999876543210</dm:deviceID>
        <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
 </presence>
```

Б.3 Примеры XML-документов для представления дополнительных данных, необходимых для реагирования (протокол HTTP (HTTPS))

Пример структуры ответа от ИС оператора связи в виде XML-документа для представления информации с дополнительными данными для пользователя – физического лица.

```
<?xml version="1.0" encoding="UTF-8"?>
- <response xsi:noNamespaceSchemaLocation="pull_response.xsd"
 xmlns:ai="http://www.svetets.ru/AbonentInfo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
     <resultCode>0</resultCode>
     <resultDescription/>
   - <ai:AbonentInfo>
       - <ai:person>
            <ai:name>Григорий</ai:name>
            <ai:secondName>Валерьянович</ai:secondName>
            <ai:surname>Иванов</ai:surname>
            <ai:address>г. Санкт-Петербург г. Сестрорецк. Садоводство Веретено ул. 20-я
               дорожка;124;Дом;А;Литер</ai:address>
            <ai:birthDate>1973-11-30</ai:birthDate>
        </ai:person>
     </ai:AbonentInfo>
  </response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа для представления информации с дополнительными данными для пользователя – юридического лица.

Б.4 Примеры формирования сообщений протокола SIP, включающих данные места нахождения пользовательского оборудования

Пример сообщения SIP INVITE, содержащего данные места нахождения пользовательского оборудования в виде точки.

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "79313275383" <sip:79313275383@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSeq: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: .
P-Visited-Network-ID: "DEFXXXXXXX"
-boundary1
Content-Type: application/sdp
...Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="79313275383" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
    <gp:geopriv>
      <gp:location-info>
        <gml:location>
          <gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
          <gml:pos>30.2237 59.9448</gml:pos>
          </gml:Point>
        </gml:location>
      </gp:location-info>
    </gp:geopriv>
    <dm:deviceID>250999876543210</dm:deviceID>
    <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
  </dm:device>
</presence>
--boundary1--
```

Пример сообщения SIP INVITE, содержащего данные места нахождения пользовательского оборудования в виде круга.

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "79313275383" <sip:79313275383@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSeq: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
P-Visited-Network-ID: "DEFXXXXXXX"
--boundary1
Content-Type: application/sdp
...Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="79313275383" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="E6196E72-B103-453B-B2FF-CFCE563C7C4A">
     <qp:geopriv>
      <qp:location-info>
       < aml: location>
       <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
        <gml:pos>30.2237 59.9448
        <gs:radius uom="urn:ogc:def:uom:EPSG::9001">250</gs:radius>
       </as:Circle>
      </gml:location>
      </gp:location-info>
     </gp:geopriv>
     <dm:deviceID>250999876543210</dm:deviceID>
     <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
    </dm:device>
   </presence>
--boundary1--
```

Пример сообщения SIP INVITE, содержащего данные места нахождения пользовательского оборудования в виде

круговогосектора.

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "79313275383" <sip:79313275383@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSeq: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
P-Visited-Network-ID: "DEFXXXXXXX"
-boundary1
Content-Type: application/sdp
...Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
cpresence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="79313275383" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
     <gp:geopriv>
      <gp:location-info>
       <gml:location>
        <gs:ArcBand srsName="urn:ogc:def:crs:EPSG::4326">
         <gml:pos>30.2237 59.9448</gml:pos>
         <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">150</gs:innerRadius>
         <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">450</gs:outerRadius>
         <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:startAngle>
         <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:openingAngle>
        </gs:ArcBand>
       </gml:location>
      </gp:location-info>
     </ap:geopriv>
     <dm:deviceID>250999876543210</dm:deviceID>
     <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
    </dm:device>
   </presence>
--boundary1--
```

HOUSE».

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "74957718100" <sip:74957718100@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSea: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
--boundary1
Content-Type: application/sdp
 ..Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:fs="http://www.svetets.ru/fias'
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="74957718100" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
    <gp:geopriv>
      <gp:location-info>
        <gml:location>
          <cl:civicAddress>
          <fs:HOUSE>
            <fs:HOUSEGUID>c9f9fe40-b9a7-461c-bf98-0338c90f242b</fs:HOUSEGUID>
            <fs:ENTRANCE>3</fs:ENTRANCE>
            <fs:LEVEL>5</fs:LEVEL>
            <fs:ROOM>90</fs:ROOM>
          </fs:HOUSE>
          </cl>civicAddress>
        </aml:location>
      </gp:location-info>
    </gp:geopriv>
    <dm:deviceID>74957718100</dm:deviceID>
    <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
  </dm:device>
</presence>
--boundary1--
```

SIP

HOUSEINT».

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "74957718100" <sip:74957718100@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSeq: 31862 INVITE
Contact: <sip:74957718100@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
--boundary1
Content-Type: application/sdp
...Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
xmlns:fs="http://www.svetets.ru/fias"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="74957718100" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
    <gp:geopriv>
      <gp:location-info>
        <qml:location>
          <cl:civicAddress>
          <fs:HOUSEINT>f38f2071-558e-42d1-b1c1-676cee68ea3c</fs:HOUSEINT>
          </cl>civicAddress>
        </gml:location>
      </gp:location-info>
    </gp:geopriv>
    <dm:deviceID>74957718100</dm:deviceID>
    <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
  </dm:device>
ence>
--boundary1--
```

LANDMARK».

пользовательского оборудования в виде адресного объекта «

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: 112 <sip:112@192.168.104.200>
From: 0749577181000 <sip:74957718100@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
Accept: application/sdp, application/pidf+xml
CSeq: 31862 INVITE
Contact: <sip:74957718100@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
--boundary1
Content-Type: application/sdp
...Session Description Protocol (SDP) goes here
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:qp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
xmlns:fs="http://www.svetets.ru/fias"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="74957718100"
xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
    <gp:geopriv>
      <qp:location-info>
        <aml:location>
          <cl:civicAddress>
            <fs:LANDMARK>ae0b9723-ebe3-46cb-a73a-1db3846980ee</fs:LANDMARK>
          </cl>civicAddress>
        </gml:location>
      </gp:location-info>
    </gp:geopriv>
    <dm:deviceID>74957718100</dm:deviceID>
    <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
  </dm:device>
</presence>
--boundary1--
```

Пример сообщения SIP INVITE, содержащего данные места нахождения пользовательского оборудования в виде адресного объекта «

SIP INVITE, содержащего экстренное короткое текстовое сообщение

и данные

нахождения пользовательского оборудования в виде круга.

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "79313275383" <sip:79313275383@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
 Accept: application/sdp, application/pidf+xml
 CSeq: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length:
P-Visited-Network-ID: "DEFXXXXXXX"
--boundary1
Content-Type: application/sdp
o=TSKS 0 0 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
m=audio 1234 RTP/AVP 8
a=inactive
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
conce xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf.params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="79313275383" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
   <dm:device id="E6196E72-B103-453B-B2FF-CFCE563C7C4A">
       <gp:geopriv>
        <gp:location-info>
         <qml:location>
          <gs:Circle srsName="urn:ogc:def.crs:EPSG::4326">
           <gml:pos>30.2237 59.9448
          <gs:radius uom="urn:ogc:def:uom:EPSG::9001">250</gs:radius>
          </gs:Circle>
        </gml:location>
        </gp:location-info>
       </gp:geopriv>
       <dm:deviceID>250999876543210</dm:deviceID>
       <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
     </dm:device>
    </presence>
--boundary1--
Content-Disposition: form-data; name="part"
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Требуется помощь!
--boundary1--
```

SIP INVITE, содержащего экстренное короткое текстовое сообщение

и данные

нахождения пользовательского оборудования в виде кругового сектора.

```
INVITE sip:112@192.168.104.200 SIP/2.0
Via: SIP/2.0/UDP 192.168.104.221;branch=z9hG4bK-74bf9
Max-Forwards: 70
To: "112" <sip:112@192.168.104.200>
From: "79313275383" <sip:79313275383@192.168.104.22>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.104.22
 Accept: application/sdp, application/pidf+xml
 CSeq: 31862 INVITE
Contact: <sip:79313275383@192.168.104.22>
Content-Type: multipart/mixed; boundary=boundary1
Content-Length:
P-Visited-Network-ID: "DEFXXXXXXX"
--boundary1
Content-Type: application/sdp
o=TSKS 0 0 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
m=audio 1234 RTP/AVP 8
a=inactive
--boundary1
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22 
<?xml version="1.0" encoding="UTF-8"?>
cpresence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="79313275383" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd">
   <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
       <gp:geopriv>
        <gp:location-info>
         <gml:location>
          <gs:ArcBand srsName="urn:ogc:def:crs:EPSG::4326">
           <gml:pos>30.2237 59.9448</gml:pos>
            <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">150</gs:innerRadius>
           <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">450</gs:outerRadius>
            <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:startAngle>
           <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:openingAngle>
          </gs:ArcBand>
         </gml:location>
        </gp:location-info>
       </gp:geopriv>
       <dm:deviceID>250999876543210</dm:deviceID>
       <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
      </dm:device>
    </presence>
--boundary1--
Content-Disposition: form-data; name="part"
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Требуется помощь!
--boundary1--
```

SIP «302 Moved Temporarily» с включением в тело сообщения

данных нахождения пользовательского оборудования (в виде адресного объекта «HOUSE»).

```
SIP/2.0 302 Moved Temporarily
CSeq: 1 INVITE
Call-ID: 6994611389834070634-1470309033-15454
From: <sip:74957718100;ss7-cpc=10;cpc=ordinary@sipgw5103.com;user=phone>;tag=6994611389834070634
To: <sip:77272739999@10.61.0.5:2002;user=phone>
Via: SIP/2.0/UDP 10.60.2.18:2002;branch=z9hG4bK-6111da0000f60a6a-a3c0212-1
Contact: <sip:99977272739999@10.60.2.13:2002>;q=0.7,<sip:99977272739999@10.60.0.13:2002>;q=0.5
Content-Type: multipart/mixed; boundary=boundary1
Content-Length: ...
--boundary1--
Content-Type: application/pidf+xml
Content-ID: target123@192.168.104.22
<?xml version="1.0" encoding="UTF-8"?>
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:fs="http://www.svetets.ru/fias"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
entity="74957718100" xsi:schemaLocation="urn:ieff:params:xml:ns:pidf presence.xsd">
  <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
    <gp:geopriv>
      <gp:location-info>
        <gml:location>
          <cl:civicAddress>
          <fs:HOUSE>
            <fs:HOUSEGUID>c9f9fe40-b9a7-461c-bf98-0338c90f242b</fs:HOUSEGUID>
            <fs:ENTRANCE>3</fs:ENTRANCE>
            <fs:LEVEL>5</fs:LEVEL>
            <fs:ROOM>90</fs:ROOM>
          </fs:HOUSE>
          </cl>civicAddress>
        </gml:location>
      </gp:location-info>
    </gp:geopriv>
    <dm:deviceID>74957718100</dm:deviceID>
    <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
  </dm:device>
</presence>
--boundary1
```

Б.5 Примеры XML-документов, включающих данные места нахождения (протокол HTTP (HTTPS))

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде адресного объекта «HOUSE»

```
<?xml version="1.0" encoding="UTF-8"?>
<response xsi:noNamespaceSchemaLocation="pull_response.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xml="http://www.w3.org/XML/1998/namespace">
   <resultCode>0</resultCode>
    <resultDescription/>
  - - construction="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:ietf:params:xml:ns:pidf presence.xsd"
   entity="74957718100" xmlns:fs="http://www.svetets.ru/fias" xmlns:gml="http://www.opengis.net/gml
   xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
   xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns="urn:ietf:params:xml:ns:pidf">
- <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
           <gp:geopriv>
              <gp:location-info>
                  <gml:location>
                      <cl:civicAddress>
                        - <fs:HOUSE>
                              <fs:HOUSEGUID>c9f9fe40-b9a7-461c-bf98-0338c90f242b</fs:HOUSEGUID>
                              <fs:ENTRANCE>3</fs:ENTRANCE>
                              <fs:LEVEL>5</fs:LEVEL>
                              <fs:ROOM>90</fs:ROOM>
                          </fs:HOUSE>
                      </cl:civicAddress>
                   </aml:location>
               </gp:location-info>
           </gp:geopriv>
           <dm:deviceID>74957718100</dm:deviceID>
           <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
       </dm:device>
    </presence>
</response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде адресного объекта «HOUSEINT»

```
<?xml version="1.0" encoding="UTF-8"?>
xmlns:xml="http://www.w3.org/XML/1998/namespace">
   <resultCode>0</resultCode>
   <resultDescription/>
   entity="74957718100" xmlns:gml="http://www.opengis.net/gml" xmlns:fs="http://www.svetets.ru/fias" xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civicLoc" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns="urn:ietf:params:xml:ns:pidf">
      <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
        - <gp:geopriv>
- <gp:location-info>
                <gml:location>
                  <cl:civicAddress>
                      <fs:HOUSEINT>f38f2071-558e-42d1-b1c1-676cee68ea3c</fs:HOUSEINT>
                   </cl:civicAddress>
                </gml:location>
             </gp:location-info>
         </qp:geopriv>
         <dm:deviceID>74957718100</dm:deviceID>
          <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
      </dm:device>
   </presence>
</response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде адресного объекта «LANDMARK»

```
<?xml version="1.0" encoding="UTF-8"?>
<response xsi:noNamespaceSchemaLocation="pull_response.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xmlns:xml="http://www.w3.org/XML/1998/namespace">
   <resultCode>0</resultCode>
    <resultDescription/>
   entity="74957718100" xmlns:gml="http://www.opengis.net/gml" xmlns:fs="http://www.svetets.ru/fias" xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civictoc" xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model" xmlns="urn:ietf:params:xml:ns:pidf">
       <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
        <gml:location>
                     <cl:civicAddress>
                         <fs:LANDMARK>ae0b9723-ebe3-46cb-a73a-1db3846980ee</fs:LANDMARK>
                 </gml:location>
              </gp:location-info>
           </ap:geopriv>
           <dm:deviceID>74957718100</dm:deviceID>
           <dm:timestamp>2015-03-04T20:57:29Z</dm:timestamp>
       </dm:device>
   </presence>
</response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде точки.

```
<?xml version="1.0" encoding="UTF-8"?>
<response xsi:noNamespaceSchemaLocation="pull_response.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xmlns:xml="http://www.w3.org/XML/1998/namespace">
   <resultCode>0</resultCode>
   <resultDescription/>
   xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
   xmlns="urn:ietf:params:xml:ns:pidf">
      <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
        <gp:geopriv>
            <gp:location-info>
               <gml:location>
                  <gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
                      <gml:pos>30.2237 59.9448</gml:pos>
                  </gml:Point>
               </gml:location>
            </gp:location-info>
         </gp:geopriv>
         <dm:deviceID>250999876543210</dm:deviceID>
         <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
      </dm:device>
   </presence>
</response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде круга.

```
<?xml version="1.0" encoding="UTF-8"?>
<response xsi:noNamespaceSchemaLocation="pull_response.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xmlns:xml="http://www.w3.org/XML/1998/namespace">
   <resultCode>0</resultCode>
   <resultDescription/>
   xmlns="urn:ietf:params:xml:ns:pidf">
      <dm:device id="E6196E72-B103-453B-B2FF-CFCE563C7C4A">
        - <gp:geopriv>
            <gp:location-info>
                <gml:location>
                  <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
    <gml:pos>30.2237 59.9448</gml:pos>
    <gs:radius uom="urn:ogc:def:uom:EPSG::9001">250</gs:radius>
                   </gs:Circle>
                </gml:location>
             </gp:location-info>
         </gp:geopriv>
         <dm:deviceID>250999876543210</dm:deviceID>
         <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
      </dm:device>
   </presence>
</response>
```

Пример структуры ответа от ИС оператора связи в виде XML-документа с информацией места нахождения в виде кругового сектора.

```
<?xml version="1.0" encoding="UTF-8"?>
<response xsi:noNamespaceSchemaLocation="pull_response.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xml="http://www.w3.org/XML/1998/namespace">
    <resultCode>0</resultCode>
  <resultDescription/>
- 

<pr
    xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10" xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
    xmlns="urn:ietf:params:xml:ns:pidf">
- <dm:device id="C6196E72-B103-453B-B2FF-CFCE563C7C4A">
            <gp:geopriv>
                <gp:location-info>
                    <qml:location>
                        <gs:ArcBand srsName="urn:ogc:def:crs:EPSG::4326">
                            <gml:pos>30.2237 59.9448</pml:pos>
<gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">150</gs:innerRadius>
                            <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">450</gs:outerRadius>
                            <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:startAngle>
                            <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">20</gs:openingAngle>
                        </gs:ArcBand>
                    </gml:location>
                </gp:location-info>
            </gp:geopriv>
            <dm:deviceID>250999876543210</dm:deviceID>
            <dm:timestamp>2017-03-04T20:57:29Z</dm:timestamp>
        </dm:device>
    </presence>
</response>
```

Приложение В. Коды результатов взаимодействия ЦОВ-112 с ТСМН и ИС операторов связи

Таблица В.1- Диапазоны кодов результатов

0 – 99	Ошибки ТСМН, ИС оператора связи

100 – 199	Ошибки запроса
200 – 299	Ошибки сети

Коды результатов определения места нахождения и передачи дополнительной информации, получаемых от ИС операторов связи приведены в таблице В.2 и В.3

Таблица В.2 - Коды результатов ответа на запрос определения места нахождения и их описание

Код результата	Название	Описание
0	OK	Успешная обработка запроса.
1	SYSTEM FAILURE Сбой системы	Запрос не может быть обработан по причине общей ошибки в ТСМН или базовой сети
2	UNSPECIFIED ERROR Неизвестная ошибка	Данная ошибка используется в случае, когда нельзя использовать другие ошибки.
3	UNAUTHORIZED APPLICATION Неавторизованное приложение	Приложение не имеет доступа к ТСМН или передан неверный пароль.
4	UNKNOWN SUBSCRIBER Неизвестный абонент	Неизвестный абонент.
5	ABSENT SUBSCRIBER Абонент отсутствует	Абонент отсутствует. Абонент недоступен.
6	POSITION METHOD FAILURE Сбой метода определения местоположения	Сбой метода определения местоположения. Не удалось определить местоположение абонента.
101	CONGESTION IN LOCATION SERVER Перегрузка ТСМН	Запрос не может быть обработан, из-за перегрузки ТСМН.
102	CONGESTION IN MOBILE NETWORK Перегрузка мобильной сети	Запрос не может быть обработан из-за перегрузки мобильной сети
103	UNSUPPORTED VERSION Не поддерживаемая версия	ТСМН не поддерживает указанную версию протокола
105	FORMAT ERROR Ошибка формата	Элемент протокола в запросе имеет неверный формат.
106	SYNTAX ERROR Синтаксическая ошибка	Запрос местоположения имеет синтаксические ошибки
107	PROTOCOL ELEMENT NOT	Элемент протокола, указанный в запросе
	SUPPORTED Не поддерживаемый элемент протокола	местоположения, не поддерживается ТСМН.

108	SERVICE NOT SUPPORTED Сервис не поддерживается	Запрошенный сервис не поддерживается ТСМН.
109	PROTOCOL ELEMENT ATTRIBUTE NOT SUPPORTED Атрибут элемента протокола не поддерживается.	Атрибут элемента протокола не поддерживается ТСМН.
110	INVALID PROTOCOL ELEMENT VALUE Неверное значение элемента протокола	Неверное значение элемента протокола
111	INVALID PROTOCOL ELEMENT ATTRIBUTE VALUE Неверное значение атрибута элемента протокола	Неверное значение атрибута элемента протокола
112	PROTOCOL ELEMENT VALUE NOT SUPPORTED Значение элемента протокола не поддерживается.	Указанное значение элемента протокола не поддерживается ТСМН.
113	PROTOCOL ELEMENT ATTRIBUTE VALUE NOT SUPPORTED Значение атрибута элемента протокола не поддерживается	Указанное значение атрибута элемента протокола не поддерживается ТСМН.
201	QOP NOT ATTAINABLE	QOP - Quality Of Position. Требуемое качество позиционирования недоступно.

В.2 Коды результатов ответа на запрос дополнительной информации от ИС операторов связи

Таблица В.3 - Коды результатов передачи дополнительной информации и их описание

Код результата	Название	Описание
0	ОК	Успешная обработка запроса.
1	SYSTEM FAILURE Сбой системы	Запрос не может быть обработан по причине общей ошибки в ТСМН или базовой сети
2	UNSPECIFIED ERROR Неизвестная ошибка	Данная ошибка используется в случае, когда нельзя использовать другие ошибки.
3	UNAUTHORIZED APPLICATION Неавторизованное приложение	Приложение не имеет доступа к ТСМН или передан неверный пароль.

4	UNKNOWN SUBSCRIBER Неизвестный абонент	Неизвестный абонент.
101	CONGESTION IN LOCATION SERVER Перегрузка ТСМН	Запрос не может быть обработан, из-за перегрузки ТСМН.
103	UNSUPPORTED VERSION Не поддерживаемая версия	ТСМН не поддерживает указанную версию протокола
105	FORMAT ERROR Ошибка формата	Элемент протокола в запросе имеет неверный формат.
106	SYNTAX ERROR Синтаксическая ошибка	Запрос местоположения имеет синтаксические ошибки
107	PROTOCOL ELEMENT NOT SUPPORTED Не поддерживаемый элемент протокола	Элемент протокола, указанный в запросе местоположения, не поддерживается ТСМН.
108	SERVICE NOT SUPPORTED Сервис не поддерживается	Запрошенный сервис не поддерживается ТСМН.
109	PROTOCOL ELEMENT ATTRIBUTE NOT SUPPORTED Атрибут элемента протокола не поддерживается.	Атрибут элемента протокола не поддерживается ТСМН.
110	INVALID PROTOCOL ELEMENT VALUE Неверное значение элемента протокола	Неверное значение элемента протокола
111	INVALID PROTOCOL ELEMENT ATTRIBUTE VALUE Неверное значение атрибута элемента протокола	Неверное значение атрибута элемента протокола
112	PROTOCOL ELEMENT VALUE NOT SUPPORTED Значение элемента протокола не поддерживается.	Указанное значение элемента протокола не поддерживается ТСМН.
113	PROTOCOL ELEMENT ATTRIBUTE VALUE NOT SUPPORTED Значение атрибута элемента протокола не поддерживается	Указанное значение атрибута элемента протокола не поддерживается ТСМН.